Home
Class 12
MATHS
If y sqrt(1-x^2)+x sqrt(1-y^2)=1. Prove ...

If `y sqrt(1-x^2)+x sqrt(1-y^2)=1`. Prove that `dy/dx=-sqrt((1-y^2)/(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

y sqrt(1-x^(2))+x sqrt(1-y^(2))=1,prov et h a t (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x=sqrt(1-y^2) , then (dy)/(dx)=

If sqrt(y+x)+sqrt(y-x)=c show that (dy)/(dx)=(y)/(x)-sqrt(((y^(2))/(x^(2)))-1)