Home
Class 12
CHEMISTRY
A sample of C(x)O(y) having 3xx10^(19) m...

A sample of `C_(x)O_(y)` having `3xx10^(19)` molecules is weighing `3.4 mg`. Then the value of x and y is respectively …………… `(Take N_(A) = 6xx10^(23))`

A

`1,2`

B

`3,2`

C

`2,2`

D

`5,2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of x and y in the molecular formula \( C_xO_y \) given the number of molecules and the mass of the sample. Here’s a step-by-step solution: ### Step 1: Calculate the number of moles from the number of molecules. We are given the number of molecules as \( 3 \times 10^{19} \) and Avogadro's number \( N_A = 6 \times 10^{23} \). Using the formula for moles: \[ \text{Moles} = \frac{\text{Number of molecules}}{N_A} \] Substituting the values: \[ \text{Moles} = \frac{3 \times 10^{19}}{6 \times 10^{23}} = 0.5 \times 10^{-4} = 5 \times 10^{-5} \text{ moles} \] ### Step 2: Convert the mass from milligrams to grams. The mass of the sample is given as \( 3.4 \text{ mg} \). To convert this to grams: \[ 3.4 \text{ mg} = 3.4 \times 10^{-3} \text{ g} \] ### Step 3: Use the relationship between moles, mass, and molar mass. The formula relating moles, mass, and molar mass is: \[ \text{Moles} = \frac{\text{Mass (g)}}{\text{Molar Mass (g/mol)}} \] Let the molar mass be \( M \). Substituting the known values: \[ 5 \times 10^{-5} = \frac{3.4 \times 10^{-3}}{M} \] Rearranging this gives: \[ M = \frac{3.4 \times 10^{-3}}{5 \times 10^{-5}} = 68 \text{ g/mol} \] ### Step 4: Set up the equation for the molar mass of \( C_xO_y \). The molar mass of the compound can be expressed as: \[ M = 12x + 16y \] Setting this equal to the calculated molar mass: \[ 12x + 16y = 68 \] ### Step 5: Solve for x and y using trial and error. We can try different integer values for \( x \) and \( y \) that satisfy the equation \( 12x + 16y = 68 \). 1. **Let \( x = 2 \)**: \[ 12(2) + 16y = 68 \implies 24 + 16y = 68 \implies 16y = 44 \implies y = 2.75 \quad \text{(not an integer)} \] 2. **Let \( x = 3 \)**: \[ 12(3) + 16y = 68 \implies 36 + 16y = 68 \implies 16y = 32 \implies y = 2 \quad \text{(integer)} \] Thus, we find \( x = 3 \) and \( y = 2 \). ### Final Answer: The values of \( x \) and \( y \) are \( 3 \) and \( 2 \) respectively. ---

To solve the problem, we need to find the values of x and y in the molecular formula \( C_xO_y \) given the number of molecules and the mass of the sample. Here’s a step-by-step solution: ### Step 1: Calculate the number of moles from the number of molecules. We are given the number of molecules as \( 3 \times 10^{19} \) and Avogadro's number \( N_A = 6 \times 10^{23} \). Using the formula for moles: \[ \text{Moles} = \frac{\text{Number of molecules}}{N_A} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of electron in 3.1 mg NO_(3)^(-) is ( N_(A) = 6 xx 10^(23) )

If (x+y, 5) = (10, y-3), find the values of x and y.

Number of electrons in 36mg of ._8^(18)O^(-2) ions are : (Take N_(A) = 6 xx 10^(23))

Number of electrons present in 3.6 mg of NH_(4)^(+) are : (N_(A) = 6 xx 10^(23))

A sample of MgSO_(4) has 6.023 xx 10^(20)O atoms What is mass of Mg in sample ? .

Find the values o x and y if: (5x-3y,y-3x)=(4,-4)

The decomposition of NH_(3) on Pt surface is a zero order reaction. If the value of rate constant is 2 xx 10^(-4)" mole liter"^(-1)" sec"^(-1) . The rate of appearance of N_(2) and H_(2) are respectively {:(" N"_(2)," H"_(2)),("(1) "1xx10^(-4)" mol l"^(-1)"sec"^(-1),3xx10^(-4)" mol"^(-1)"sec"^(-1)),("(2) "3xx10^(-4)" mol l"^(-1)"sec"^(-1),1xx10^(-4)" mol"^(-1)"sec"^(-1)),("(3) "2xx10^(-4)" mol l"^(-1)"sec"^(-1),6xx10^(-4)" mol"^(-1)"sec"^(-1)),("(4) "3xx10^(-4)" mol l"^(-1)"sec"^(-1),3xx10^(-4)" mol"^(-1)"sec"^(-1)):}

Calculate molecular diameter for a gas if its molar exclued volume is 3.2 pi ml . (in nenometer) (Take N_(A) = 6.0 xx 10^(23))

One atom of an element X weighs 6 xx 10^(-23) gm . Number of moles of atoms in 3.6 kg of sample of X will be : (N_(A) = 6 xx 10^(23))

If 2^(x) = 4 xx 2^(y) and 9 xx 3^(x) = 3^(-y) , find the values of x and y.