Home
Class 12
MATHS
For any real a, b, c the expression 2a^(...

For any real `a, b, c` the expression `2a^(2) + 11b^(2) + 4c^(2) - 8ab - 6bc - 2c + 41` is minimum then

A

`a - b - c = 0`

B

`a = 2b`

C

`a + b + c = 4`

D

`c = a`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(2a^2 + 11b^2 + 4c^2 - 8ab - 6bc - 2c + 41\), we will complete the square for the quadratic terms in \(a\), \(b\), and \(c\). ### Step 1: Rearranging the Expression We start with the expression: \[ 2a^2 + 11b^2 + 4c^2 - 8ab - 6bc - 2c + 41 \] ### Step 2: Grouping Terms We can group the terms involving \(a\) and \(b\) together, and the terms involving \(b\) and \(c\) together: \[ = 2a^2 - 8ab + 11b^2 + 4c^2 - 6bc - 2c + 41 \] ### Step 3: Completing the Square for \(a\) and \(b\) To complete the square for \(2a^2 - 8ab + 11b^2\): 1. Factor out the coefficient of \(a^2\): \[ = 2(a^2 - 4ab) + 11b^2 \] 2. Complete the square: \[ = 2((a - 2b)^2 - 4b^2) + 11b^2 = 2(a - 2b)^2 + (11b^2 - 8b^2) = 2(a - 2b)^2 + 3b^2 \] ### Step 4: Completing the Square for \(b\) and \(c\) Next, we complete the square for \(3b^2 - 6bc + 4c^2\): 1. Factor out the coefficient of \(b^2\): \[ = 3(b^2 - 2bc) + 4c^2 \] 2. Complete the square: \[ = 3((b - c)^2 - c^2) + 4c^2 = 3(b - c)^2 + (4c^2 - 3c^2) = 3(b - c)^2 + c^2 \] ### Step 5: Putting it All Together Now, substitute back into the expression: \[ = 2(a - 2b)^2 + 3(b - c)^2 + c^2 + 41 \] ### Step 6: Finding the Minimum Value The expression \(2(a - 2b)^2 + 3(b - c)^2 + c^2\) is minimized when each squared term is zero: 1. \(a - 2b = 0 \Rightarrow a = 2b\) 2. \(b - c = 0 \Rightarrow b = c\) 3. \(c = 0\) ### Step 7: Solving for \(a\), \(b\), and \(c\) From \(b = c\) and substituting into \(a = 2b\): 1. Let \(c = 1\), then \(b = 1\) and \(a = 2\). ### Conclusion The minimum value of the expression occurs when: \[ a = 2, \quad b = 1, \quad c = 1 \] The minimum value of the expression is \(41\).

To find the minimum value of the expression \(2a^2 + 11b^2 + 4c^2 - 8ab - 6bc - 2c + 41\), we will complete the square for the quadratic terms in \(a\), \(b\), and \(c\). ### Step 1: Rearranging the Expression We start with the expression: \[ 2a^2 + 11b^2 + 4c^2 - 8ab - 6bc - 2c + 41 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Find : a + b+ c , if a^(2) + b^(2) + c^(2) = 83 and ab + bc + ca = 71 .

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

If a+b+c =11 and a^(2) + b^(2) + c^(2) =81 , find : ab + bc + ca .

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24