Home
Class 12
MATHS
Let 'a' be an integer. If there are 10 i...

Let `'a'` be an integer. If there are `10` inegers satisfying the `((x-a)^(2)(x-2a))/((x-3a)(x-4a))le0` then

A

`a` is prime number

B

`e^(a) lt pi^(a)`

C

`a^(2) - 2` is prime number

D

number of possible values of `a` is `2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(x-a)^{2}(x-2a)}{(x-3a)(x-4a)} \leq 0\), we will analyze the expression step by step. ### Step 1: Identify the critical points The critical points of the inequality occur when the numerator or denominator is equal to zero. - **Numerator**: \((x-a)^{2}(x-2a) = 0\) - \(x = a\) (double root) - \(x = 2a\) (single root) - **Denominator**: \((x-3a)(x-4a) = 0\) - \(x = 3a\) (single root) - \(x = 4a\) (single root) Thus, the critical points are \(a\), \(2a\), \(3a\), and \(4a\). ### Step 2: Determine the intervals The critical points divide the number line into intervals. We need to test the sign of the expression in each interval: 1. \((- \infty, a)\) 2. \((a, 2a)\) 3. \((2a, 3a)\) 4. \((3a, 4a)\) 5. \((4a, +\infty)\) ### Step 3: Test the intervals We will test a point from each interval to determine where the expression is less than or equal to zero. 1. **Interval \((- \infty, a)\)**: Choose \(x = a - 1\) \[ \frac{(a-1-a)^{2}(a-1-2a)}{(a-1-3a)(a-1-4a)} = \frac{(1)^{2}(-1)}{(-2)(-3)} = \frac{-1}{6} < 0 \] 2. **Interval \((a, 2a)\)**: Choose \(x = \frac{3a}{2}\) \[ \frac{(\frac{3a}{2}-a)^{2}(\frac{3a}{2}-2a)}{(\frac{3a}{2}-3a)(\frac{3a}{2}-4a)} = \frac{(\frac{a}{2})^{2}(-\frac{a}{2})}{(-\frac{3a}{2})(-\frac{5a}{2})} = \frac{-\frac{a^{3}}{8}}{\frac{15a^{2}}{4}} < 0 \] 3. **Interval \((2a, 3a)\)**: Choose \(x = 2.5a\) \[ \frac{(2.5a-a)^{2}(2.5a-2a)}{(2.5a-3a)(2.5a-4a)} = \frac{(1.5a)^{2}(0.5a)}{(-0.5a)(-1.5a)} = \frac{1.125a^{3}}{0.75a^{2}} > 0 \] 4. **Interval \((3a, 4a)\)**: Choose \(x = 3.5a\) \[ \frac{(3.5a-a)^{2}(3.5a-2a)}{(3.5a-3a)(3.5a-4a)} = \frac{(2.5a)^{2}(1.5a)}{(0.5a)(-0.5a)} < 0 \] 5. **Interval \((4a, +\infty)\)**: Choose \(x = 5a\) \[ \frac{(5a-a)^{2}(5a-2a)}{(5a-3a)(5a-4a)} = \frac{(4a)^{2}(3a)}{(2a)(a)} > 0 \] ### Step 4: Combine results The expression is less than or equal to zero in the intervals: - \((- \infty, a]\) - \([2a, 3a]\) - \((3a, 4a]\) ### Step 5: Count the integer solutions To find the total number of integers satisfying the inequality, we need to count the integers in the intervals: 1. From \((- \infty, a]\) — Count integers from \(-\infty\) to \(a\). 2. From \([2a, 3a]\) — Count integers from \(2a\) to \(3a\). 3. From \((3a, 4a]\) — Count integers from \(3a\) to \(4a\). ### Step 6: Set up the equation The total number of integers satisfying the inequality is given as \(10\): \[ \text{Count from } (-\infty, a] + \text{Count from } [2a, 3a] + \text{Count from } (3a, 4] = 10 \] ### Step 7: Solve for \(a\) Let’s denote: - Count from \((- \infty, a]\) = \(a + 1\) (if \(a\) is positive) - Count from \([2a, 3a]\) = \(a + 1\) (as there are \(a\) integers from \(2a\) to \(3a\)) - Count from \((3a, 4a]\) = \(a\) (as there are \(a\) integers from \(3a\) to \(4a\)) Thus, we have: \[ (a + 1) + (a + 1) + a = 10 \] \[ 3a + 2 = 10 \] \[ 3a = 8 \implies a = \frac{8}{3} \] Since \(a\) must be an integer, we check integer values around this to find suitable integers. ### Conclusion After checking integer values, we find that \(a = 5\) or \(a = -2\) satisfy the conditions.

To solve the inequality \(\frac{(x-a)^{2}(x-2a)}{(x-3a)(x-4a)} \leq 0\), we will analyze the expression step by step. ### Step 1: Identify the critical points The critical points of the inequality occur when the numerator or denominator is equal to zero. - **Numerator**: \((x-a)^{2}(x-2a) = 0\) - \(x = a\) (double root) - \(x = 2a\) (single root) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

Let a >2 be a constant. If there are just 18 positive integers satisfying the inequality (x-a)(x-2a)(x-a^2)<0, then find the value of adot

Let a >2 be a constant. If there are just 18 positive integers satisfying the inequality (x-a)(x-2a)(x-a^2)<0, then find the value of adot

Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0

the greatest negative integer satisfying x^2+4x-77 4 is

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

The number of integers satisfying |2x-3|+|x+5| le |x-8| is

The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

Sum of integers satisfying sqrt((log)_2x-1)-1/2(log)_2(x^3)+2>0 is......