Home
Class 12
MATHS
(sqrt15+sqrt35+sqrt21+5)/(sqrt3+2sqrt5+s...

`(sqrt15+sqrt35+sqrt21+5)/(sqrt3+2sqrt5+sqrt7)=?`

A

`N + (1)/(N) = 7`

B

`N^(2) + (1)/(N^(2)) = 5`

C

`N^(3) + (1)/(N^(3)) = 9`

D

`N^(4) + (1)/(N^(4)) = 23`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{15} + \sqrt{35} + \sqrt{21} + 5) / (\sqrt{3} + 2\sqrt{5} + \sqrt{7})\), we will simplify it step by step. ### Step 1: Multiply and Divide by \((\sqrt{7} + \sqrt{3})\) We start by multiplying the numerator and the denominator by \((\sqrt{7} + \sqrt{3})\): \[ \frac{\sqrt{15} + \sqrt{35} + \sqrt{21} + 5}{\sqrt{3} + 2\sqrt{5} + \sqrt{7}} \cdot \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} + \sqrt{3}} \] ### Step 2: Expand the Denominator Now, we will expand the denominator: \[ (\sqrt{3} + 2\sqrt{5} + \sqrt{7})(\sqrt{7} + \sqrt{3}) \] Using the distributive property (FOIL): - \(\sqrt{3} \cdot \sqrt{7} = \sqrt{21}\) - \(\sqrt{3} \cdot \sqrt{3} = 3\) - \(2\sqrt{5} \cdot \sqrt{7} = 2\sqrt{35}\) - \(2\sqrt{5} \cdot \sqrt{3} = 2\sqrt{15}\) - \(\sqrt{7} \cdot \sqrt{7} = 7\) Combining these, we get: \[ \sqrt{21} + 3 + 2\sqrt{35} + 2\sqrt{15} + 7 = 10 + 2\sqrt{35} + 2\sqrt{15} + \sqrt{21} \] ### Step 3: Simplify the Numerator The numerator remains: \[ \sqrt{15} + \sqrt{35} + \sqrt{21} + 5 \] ### Step 4: Combine Like Terms Now we can rewrite the expression: \[ \frac{\sqrt{15} + \sqrt{35} + \sqrt{21} + 5}{10 + 2\sqrt{35} + 2\sqrt{15} + \sqrt{21}} \] ### Step 5: Factor Out Common Terms Notice that the numerator can be factored out as: \[ \sqrt{15} + \sqrt{35} + \sqrt{21} + 5 = 1(\sqrt{15} + \sqrt{35} + \sqrt{21} + 5) \] And the denominator can be factored as: \[ 10 + 2(\sqrt{15} + \sqrt{35} + \sqrt{21}) = 2(\sqrt{15} + \sqrt{35} + \sqrt{21}) + 10 \] ### Step 6: Cancel Common Terms The terms \((\sqrt{15} + \sqrt{35} + \sqrt{21} + 5)\) in the numerator and denominator cancel out: \[ \frac{\sqrt{7} + \sqrt{3}}{2} \] ### Final Answer Thus, the simplified expression is: \[ \frac{\sqrt{7} + \sqrt{3}}{2} \]

To solve the expression \((\sqrt{15} + \sqrt{35} + \sqrt{21} + 5) / (\sqrt{3} + 2\sqrt{5} + \sqrt{7})\), we will simplify it step by step. ### Step 1: Multiply and Divide by \((\sqrt{7} + \sqrt{3})\) We start by multiplying the numerator and the denominator by \((\sqrt{7} + \sqrt{3})\): \[ \frac{\sqrt{15} + \sqrt{35} + \sqrt{21} + 5}{\sqrt{3} + 2\sqrt{5} + \sqrt{7}} \cdot \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} + \sqrt{3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

2sqrt5 - sqrt5 = sqrt5

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

(iii) (sqrt 5+ sqrt 3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) =?

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

Find : (sqrt5+sqrt2)(sqrt3+sqrt2)

Find the value of the "determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|

sqrt(21-4sqrt5+8sqrt3-4sqrt12)=

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)