Home
Class 12
CHEMISTRY
Find the temperature at which 4 moles of...

Find the temperature at which 4 moles of `SO_2` will occupy a volume of 10 litre at a pressure of 15 atm. a=6.71` atm litre^2mol^(−2)` ;b=0.0564 `litre mol^(−1)` .

A

478

B

450

C

600

D

179

Text Solution

AI Generated Solution

The correct Answer is:
To find the temperature at which 4 moles of \( SO_2 \) will occupy a volume of 10 liters at a pressure of 15 atm, we will use the Van der Waals equation: \[ \left( P + \frac{a n^2}{V^2} \right) (V - nb) = nRT \] Where: - \( P \) = pressure (15 atm) - \( n \) = number of moles (4 moles) - \( V \) = volume (10 liters) - \( a \) = Van der Waals constant (6.71 atm L\(^2\) mol\(^{-2}\)) - \( b \) = Van der Waals constant (0.0564 L mol\(^{-1}\)) - \( R \) = gas constant (0.0821 atm L K\(^{-1}\) mol\(^{-1}\)) - \( T \) = temperature (unknown) ### Step 1: Substitute the known values into the Van der Waals equation Substituting the known values into the equation: \[ \left( 15 + \frac{6.71 \times 4^2}{10^2} \right) (10 - 4 \times 0.0564) = 4 \times 0.0821 \times T \] ### Step 2: Calculate the term \(\frac{a n^2}{V^2}\) Calculate \( \frac{a n^2}{V^2} \): \[ \frac{6.71 \times 16}{100} = \frac{107.36}{100} = 1.0736 \] ### Step 3: Calculate the term \( (V - nb) \) Calculate \( (10 - 4 \times 0.0564) \): \[ 10 - 0.2256 = 9.7744 \] ### Step 4: Substitute back into the equation Now substituting these values back into the equation: \[ (15 + 1.0736)(9.7744) = 4 \times 0.0821 \times T \] Calculating \( (15 + 1.0736) \): \[ 16.0736 \times 9.7744 = 4 \times 0.0821 \times T \] ### Step 5: Calculate the left side Calculating the left side: \[ 16.0736 \times 9.7744 \approx 157.52 \] ### Step 6: Calculate the right side Calculating the right side: \[ 4 \times 0.0821 = 0.3284 \] Thus, we have: \[ 157.52 = 0.3284T \] ### Step 7: Solve for \( T \) Now, solving for \( T \): \[ T = \frac{157.52}{0.3284} \approx 478.2 \text{ K} \] ### Final Answer The temperature at which 4 moles of \( SO_2 \) will occupy a volume of 10 liters at a pressure of 15 atm is approximately **478 K**. ---

To find the temperature at which 4 moles of \( SO_2 \) will occupy a volume of 10 liters at a pressure of 15 atm, we will use the Van der Waals equation: \[ \left( P + \frac{a n^2}{V^2} \right) (V - nb) = nRT \] Where: - \( P \) = pressure (15 atm) ...
Promotional Banner