To find the value of \( \sin 15^\circ \cdot \cos 15^\circ \), we can use a trigonometric identity.
### Step-by-Step Solution:
1. **Recall the Double Angle Identity**:
We know that:
\[
\sin 2x = 2 \sin x \cos x
\]
This means that \( \sin x \cdot \cos x = \frac{1}{2} \sin 2x \).
2. **Set \( x = 15^\circ \)**:
By substituting \( x = 15^\circ \) into the identity, we have:
\[
\sin 30^\circ = 2 \sin 15^\circ \cos 15^\circ
\]
3. **Calculate \( \sin 30^\circ \)**:
We know that:
\[
\sin 30^\circ = \frac{1}{2}
\]
4. **Substitute \( \sin 30^\circ \) into the equation**:
Now we can write:
\[
\frac{1}{2} = 2 \sin 15^\circ \cos 15^\circ
\]
5. **Solve for \( \sin 15^\circ \cdot \cos 15^\circ \)**:
Dividing both sides by 2 gives:
\[
\sin 15^\circ \cos 15^\circ = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}
\]
### Final Answer:
Thus, the value of \( \sin 15^\circ \cdot \cos 15^\circ \) is \( \frac{1}{4} \).
To find the value of \( \sin 15^\circ \cdot \cos 15^\circ \), we can use a trigonometric identity.
### Step-by-Step Solution:
1. **Recall the Double Angle Identity**:
We know that:
\[
\sin 2x = 2 \sin x \cos x
...