To solve the problem where we are given that \( \sin \theta = \frac{1}{3} \) and we need to find \( \cos \theta \), we can use the Pythagorean identity for sine and cosine:
### Step-by-Step Solution:
1. **Recall the Pythagorean Identity**:
The identity states that:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
2. **Substitute the value of \( \sin \theta \)**:
We know that \( \sin \theta = \frac{1}{3} \). Therefore, we can calculate \( \sin^2 \theta \):
\[
\sin^2 \theta = \left(\frac{1}{3}\right)^2 = \frac{1}{9}
\]
3. **Plug \( \sin^2 \theta \) into the identity**:
Now substitute \( \sin^2 \theta \) into the Pythagorean identity:
\[
\frac{1}{9} + \cos^2 \theta = 1
\]
4. **Isolate \( \cos^2 \theta \)**:
Rearranging the equation gives:
\[
\cos^2 \theta = 1 - \frac{1}{9}
\]
5. **Simplify the right-hand side**:
To simplify \( 1 - \frac{1}{9} \), we convert 1 into a fraction:
\[
1 = \frac{9}{9}
\]
Thus,
\[
\cos^2 \theta = \frac{9}{9} - \frac{1}{9} = \frac{8}{9}
\]
6. **Take the square root**:
Now, we take the square root of both sides to find \( \cos \theta \):
\[
\cos \theta = \pm \sqrt{\frac{8}{9}} = \pm \frac{\sqrt{8}}{3} = \pm \frac{2\sqrt{2}}{3}
\]
7. **Select the appropriate value**:
Since the options provided are positive, we take the positive value:
\[
\cos \theta = \frac{2\sqrt{2}}{3}
\]
### Final Answer:
Thus, the value of \( \cos \theta \) is:
\[
\cos \theta = \frac{2\sqrt{2}}{3}
\]
To solve the problem where we are given that \( \sin \theta = \frac{1}{3} \) and we need to find \( \cos \theta \), we can use the Pythagorean identity for sine and cosine:
### Step-by-Step Solution:
1. **Recall the Pythagorean Identity**:
The identity states that:
\[
\sin^2 \theta + \cos^2 \theta = 1
...
If (a cos theta_(1), a sin theta_(1)), ( a cos theta_(2), a sin theta_(2)), (a costheta_(3), a sin theta_(3)) represents the vertices of an equilateral triangle inscribed in x^(2) + y^(2) = a^(2) , then
If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to
Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta
Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .
If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)
Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta
If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is
If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )
The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in
Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta
RESONANCE ENGLISH-DAILY PRACTICE PROBLEMS-dpp 92 illustration