Home
Class 11
PHYSICS
y=x^(4)+3x^(2)+pi+2. Find (dy)/(dx) :...

`y=x^(4)+3x^(2)+pi+2`. Find `(dy)/(dx)` :

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = x^4 + 3x^2 + \pi + 2\), we can follow these steps: ### Step 1: Identify the function We have the function: \[ y = x^4 + 3x^2 + \pi + 2 \] ### Step 2: Differentiate each term We will differentiate each term of the function separately. 1. **Differentiate \(x^4\)**: Using the power rule \(\frac{d}{dx}(x^n) = nx^{n-1}\): \[ \frac{d}{dx}(x^4) = 4x^{4-1} = 4x^3 \] 2. **Differentiate \(3x^2\)**: Again using the power rule: \[ \frac{d}{dx}(3x^2) = 3 \cdot \frac{d}{dx}(x^2) = 3 \cdot 2x^{2-1} = 6x \] 3. **Differentiate \(\pi\)**: Since \(\pi\) is a constant: \[ \frac{d}{dx}(\pi) = 0 \] 4. **Differentiate \(2\)**: Similarly, since \(2\) is also a constant: \[ \frac{d}{dx}(2) = 0 \] ### Step 3: Combine the derivatives Now we can combine all the derivatives we calculated: \[ \frac{dy}{dx} = 4x^3 + 6x + 0 + 0 \] Thus, we simplify it to: \[ \frac{dy}{dx} = 4x^3 + 6x \] ### Final Answer The derivative of the function is: \[ \frac{dy}{dx} = 4x^3 + 6x \]

To find the derivative \(\frac{dy}{dx}\) of the function \(y = x^4 + 3x^2 + \pi + 2\), we can follow these steps: ### Step 1: Identify the function We have the function: \[ y = x^4 + 3x^2 + \pi + 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x-y =pi

y=(2x+3)^(4)-(7x-1)^(2)+(2)/((3x+1)^(3))+(4)/((4x-3)^(2)) . Find (dy)/(dx)

If y=6 x^(5)-4x^(4)+2x^(2)+3x+2 , then find (dy)/(dx) at x=-1.

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)

y=(5x)^(3cos 2x) then find (dy)/(dx) .

Given that y=(3x-1)^(2)+(2x-1)^(3) , find (dy)/(dx) and points on the curve for which (dy)/(dx)=0 .

If y= (x^2 +3)/( x^3 + 2x) , find (dy)/( dx) at x=1 .

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

Given that y= (3x -1)^(2) + (2x -1)^(3) , find (dy)/( dx) and the points on the curve for which (dy)/(dx)=0