Home
Class 11
PHYSICS
y=x^(2)+(1)/(x^(2)). Find (dy)/(dx)...

`y=x^(2)+(1)/(x^(2))`. Find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^2 + \frac{1}{x^2} \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the term \( \frac{1}{x^2} \) as \( x^{-2} \). Therefore, we can express the function as: \[ y = x^2 + x^{-2} \] ### Step 2: Differentiate the function Now, we will differentiate \( y \) with respect to \( x \). We will use the power rule for differentiation, which states that if \( y = x^n \), then \( \frac{dy}{dx} = n \cdot x^{n-1} \). 1. Differentiate \( x^2 \): \[ \frac{d}{dx}(x^2) = 2x \] 2. Differentiate \( x^{-2} \): \[ \frac{d}{dx}(x^{-2}) = -2 \cdot x^{-3} = -\frac{2}{x^3} \] ### Step 3: Combine the derivatives Now, we combine the results from the differentiation: \[ \frac{dy}{dx} = 2x - \frac{2}{x^3} \] ### Final Answer Thus, the derivative of the function \( y = x^2 + \frac{1}{x^2} \) is: \[ \frac{dy}{dx} = 2x - \frac{2}{x^3} \] ---

To find the derivative of the function \( y = x^2 + \frac{1}{x^2} \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the term \( \frac{1}{x^2} \) as \( x^{-2} \). Therefore, we can express the function as: \[ y = x^2 + x^{-2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

y=sqrt((x^(2)+x+1)/(x^(2)-x+1)) find dy/dx

If y=(x^(2))/(sinx) find (dy)/(dx)

Given that y=(3x-1)^(2)+(2x-1)^(3) , find (dy)/(dx) and points on the curve for which (dy)/(dx)=0 .

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

If y=sin^(-1)((2x)/(1+x^2)), then find (dy)/(dx)

If y=sin^(-1)((2x)/(1+x^2)), then find (dy)/(dx)

Given that y= (3x -1)^(2) + (2x -1)^(3) , find (dy)/( dx) and the points on the curve for which (dy)/(dx)=0

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b