Home
Class 11
PHYSICS
If y=sin(x)+"in"(x^(2))+e^(2x)"then"(dy)...

If `y=sin(x)+"in"(x^(2))+e^(2x)"then"(dy)/(dx)` will be :

A

`cosx+(2)/(x)+e^(2x)`

B

`cos x+(2)/(x)+2e^(2x)`

C

`-cos x+(2)/(x^(2))+e^(2x)`

D

`-ocs x-(2)/(x^(2))+2e^(2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(x) + \ln(x^2) + e^{2x} \), we will differentiate each term separately and then combine the results. ### Step-by-Step Solution: 1. **Differentiate \( \sin(x) \)**: \[ \frac{d}{dx}(\sin(x)) = \cos(x) \] 2. **Differentiate \( \ln(x^2) \)**: - First, we apply the chain rule. The derivative of \( \ln(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). - Here, \( u = x^2 \), so: \[ \frac{d}{dx}(\ln(x^2)) = \frac{1}{x^2} \cdot \frac{d}{dx}(x^2) = \frac{1}{x^2} \cdot 2x = \frac{2}{x} \] 3. **Differentiate \( e^{2x} \)**: - Using the chain rule again, the derivative of \( e^{u} \) is \( e^{u} \cdot \frac{du}{dx} \). - Here, \( u = 2x \), so: \[ \frac{d}{dx}(e^{2x}) = e^{2x} \cdot \frac{d}{dx}(2x) = e^{2x} \cdot 2 = 2e^{2x} \] 4. **Combine the derivatives**: - Now, we can combine all the derivatives we calculated: \[ \frac{dy}{dx} = \cos(x) + \frac{2}{x} + 2e^{2x} \] 5. **Final Result**: - Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \cos(x) + \frac{2}{x} + 2e^{2x} \]

To find the derivative of the function \( y = \sin(x) + \ln(x^2) + e^{2x} \), we will differentiate each term separately and then combine the results. ### Step-by-Step Solution: 1. **Differentiate \( \sin(x) \)**: \[ \frac{d}{dx}(\sin(x)) = \cos(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

If y =sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

If y sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

If x+y=sin(x+y) then (dy)/(dx)=

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

y=e^(sin x)/sinx then (dy)/(dx)=

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is