Home
Class 11
PHYSICS
If y=(lnx)/(x)"then"(dy)/(dx) will be:...

If `y=(lnx)/(x)`"then"`(dy)/(dx)` will be:

A

`(1-lnx)/(x)`

B

`(1+lnx)/(x^(2))`

C

`(1-lnx)/(x^(2))`

D

`(lnx-1)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{\ln x}{x} \), we will use the quotient rule. The quotient rule states that if you have a function that is the quotient of two functions \( u(x) \) and \( v(x) \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] In our case, we can identify: - \( u = \ln x \) - \( v = x \) Now, we will find the derivatives of \( u \) and \( v \): 1. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(\ln x) = \frac{1}{x} \] 2. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(x) = 1 \] Now, we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2} \] 3. **Substituting the values**: \[ \frac{dy}{dx} = \frac{x \cdot \frac{1}{x} - \ln x}{x^2} \] 4. **Simplifying the expression**: \[ \frac{dy}{dx} = \frac{1 - \ln x}{x^2} \] Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1 - \ln x}{x^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{1 - \ln x}{x^2} \]

To find the derivative of the function \( y = \frac{\ln x}{x} \), we will use the quotient rule. The quotient rule states that if you have a function that is the quotient of two functions \( u(x) \) and \( v(x) \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] In our case, we can identify: - \( u = \ln x \) ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If y=x lnx then (dy)/(dx) will be:

If y=x^((x^(x))) then (dy)/(dx) is

If x+y=sin(x+y) then (dy)/(dx)=

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y=(x^x)^x then (dy)/(dx) is

If y=x^(x) then Find (dy)/(dx)

If y=e^(x) then (dy)/(dx)

If y = e^(-x) , then (dy)/(dx) is