Home
Class 11
PHYSICS
y=(2x+3)^(4)-(7x-1)^(2)+(2)/((3x+1)^(3))...

`y=(2x+3)^(4)-(7x-1)^(2)+(2)/((3x+1)^(3))+(4)/((4x-3)^(2))`. Find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \[ y = (2x + 3)^4 - (7x - 1)^2 + \frac{2}{(3x + 1)^3} + \frac{4}{(4x - 3)^2}, \] we will use the chain rule and the power rule of differentiation. ### Step-by-Step Solution: 1. **Differentiate the first term**: \[ y_1 = (2x + 3)^4 \] Using the chain rule: \[ \frac{dy_1}{dx} = 4(2x + 3)^3 \cdot \frac{d}{dx}(2x + 3) = 4(2x + 3)^3 \cdot 2 = 8(2x + 3)^3. \] 2. **Differentiate the second term**: \[ y_2 = -(7x - 1)^2 \] Again using the chain rule: \[ \frac{dy_2}{dx} = -2(7x - 1) \cdot \frac{d}{dx}(7x - 1) = -2(7x - 1) \cdot 7 = -14(7x - 1). \] 3. **Differentiate the third term**: \[ y_3 = \frac{2}{(3x + 1)^3} = 2(3x + 1)^{-3} \] Using the chain rule: \[ \frac{dy_3}{dx} = 2 \cdot (-3)(3x + 1)^{-4} \cdot \frac{d}{dx}(3x + 1) = -6(3x + 1)^{-4} \cdot 3 = -18(3x + 1)^{-4}. \] 4. **Differentiate the fourth term**: \[ y_4 = \frac{4}{(4x - 3)^2} = 4(4x - 3)^{-2} \] Again using the chain rule: \[ \frac{dy_4}{dx} = 4 \cdot (-2)(4x - 3)^{-3} \cdot \frac{d}{dx}(4x - 3) = -8(4x - 3)^{-3} \cdot 4 = -32(4x - 3)^{-3}. \] 5. **Combine all derivatives**: Now, we can combine all the derivatives: \[ \frac{dy}{dx} = 8(2x + 3)^3 - 14(7x - 1) - 18(3x + 1)^{-4} - 32(4x - 3)^{-3}. \] ### Final Answer: Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = 8(2x + 3)^3 - 14(7x - 1) - 18(3x + 1)^{-4} - 32(4x - 3)^{-3}. \]

To find the derivative \( \frac{dy}{dx} \) of the function \[ y = (2x + 3)^4 - (7x - 1)^2 + \frac{2}{(3x + 1)^3} + \frac{4}{(4x - 3)^2}, \] we will use the chain rule and the power rule of differentiation. ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

y=4+5x+7x^(3) . Find (dy)/(dx) :

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

If y=((x^2+2x))/((3x-4)) , then find (dy)/(dx) .

y=(x^2+1/x^2)^3 find dy/dx

If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5) , find (dy)/(dx)

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

The solution of differential equation x^2=1 +(x/y)^(-1)(dy)/(dx)+((x/y)^-2((dy)/(dx))^2)/(2!)+((x/y)^(-3)((dy)/(dx))^3)/(3!)+... i s

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)

Find (dy)/(dx), y=((x^2-1)^3(2x-1))/(sqrt((x-3)(4x-1)))