To find the derivative \( \frac{dy}{dx} \) of the function
\[
y = (2x + 3)^4 - (7x - 1)^2 + \frac{2}{(3x + 1)^3} + \frac{4}{(4x - 3)^2},
\]
we will use the chain rule and the power rule of differentiation.
### Step-by-Step Solution:
1. **Differentiate the first term**:
\[
y_1 = (2x + 3)^4
\]
Using the chain rule:
\[
\frac{dy_1}{dx} = 4(2x + 3)^3 \cdot \frac{d}{dx}(2x + 3) = 4(2x + 3)^3 \cdot 2 = 8(2x + 3)^3.
\]
2. **Differentiate the second term**:
\[
y_2 = -(7x - 1)^2
\]
Again using the chain rule:
\[
\frac{dy_2}{dx} = -2(7x - 1) \cdot \frac{d}{dx}(7x - 1) = -2(7x - 1) \cdot 7 = -14(7x - 1).
\]
3. **Differentiate the third term**:
\[
y_3 = \frac{2}{(3x + 1)^3} = 2(3x + 1)^{-3}
\]
Using the chain rule:
\[
\frac{dy_3}{dx} = 2 \cdot (-3)(3x + 1)^{-4} \cdot \frac{d}{dx}(3x + 1) = -6(3x + 1)^{-4} \cdot 3 = -18(3x + 1)^{-4}.
\]
4. **Differentiate the fourth term**:
\[
y_4 = \frac{4}{(4x - 3)^2} = 4(4x - 3)^{-2}
\]
Again using the chain rule:
\[
\frac{dy_4}{dx} = 4 \cdot (-2)(4x - 3)^{-3} \cdot \frac{d}{dx}(4x - 3) = -8(4x - 3)^{-3} \cdot 4 = -32(4x - 3)^{-3}.
\]
5. **Combine all derivatives**:
Now, we can combine all the derivatives:
\[
\frac{dy}{dx} = 8(2x + 3)^3 - 14(7x - 1) - 18(3x + 1)^{-4} - 32(4x - 3)^{-3}.
\]
### Final Answer:
Thus, the derivative \( \frac{dy}{dx} \) is given by:
\[
\frac{dy}{dx} = 8(2x + 3)^3 - 14(7x - 1) - 18(3x + 1)^{-4} - 32(4x - 3)^{-3}.
\]
To find the derivative \( \frac{dy}{dx} \) of the function
\[
y = (2x + 3)^4 - (7x - 1)^2 + \frac{2}{(3x + 1)^3} + \frac{4}{(4x - 3)^2},
\]
we will use the chain rule and the power rule of differentiation.
...
If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5) , find (dy)/(dx)
If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is
The solution of differential equation x^2=1 +(x/y)^(-1)(dy)/(dx)+((x/y)^-2((dy)/(dx))^2)/(2!)+((x/y)^(-3)((dy)/(dx))^3)/(3!)+... i s
The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c