Home
Class 11
PHYSICS
If y=2 sin^(2) theta + tan theta then (d...

If `y=2 sin^(2) theta + tan theta` then `(dy)/(d theta)` will be-

A

`4 sin theta cos theta + sec theta tan theta`

B

`2 sin 2 theta + sec^(2) theta`

C

`4 sin theta + sec^(2) theta`

D

`2 cos^(2) theta +sec^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{d\theta}\) for the function \(y = 2 \sin^2 \theta + \tan \theta\), we will differentiate each term with respect to \(\theta\). ### Step-by-step Solution: 1. **Identify the function**: \[ y = 2 \sin^2 \theta + \tan \theta \] 2. **Differentiate the first term \(2 \sin^2 \theta\)**: - We use the chain rule for differentiation here. The derivative of \(\sin^2 \theta\) is: \[ \frac{d}{d\theta}(\sin^2 \theta) = 2 \sin \theta \cdot \frac{d}{d\theta}(\sin \theta) = 2 \sin \theta \cdot \cos \theta \] - Therefore, the derivative of \(2 \sin^2 \theta\) is: \[ \frac{d}{d\theta}(2 \sin^2 \theta) = 2 \cdot 2 \sin \theta \cos \theta = 4 \sin \theta \cos \theta \] 3. **Differentiate the second term \(\tan \theta\)**: - The derivative of \(\tan \theta\) is: \[ \frac{d}{d\theta}(\tan \theta) = \sec^2 \theta \] 4. **Combine the derivatives**: - Now, we can combine the derivatives of both terms: \[ \frac{dy}{d\theta} = 4 \sin \theta \cos \theta + \sec^2 \theta \] 5. **Use the double angle identity**: - We know that \(4 \sin \theta \cos \theta\) can be rewritten using the double angle identity: \[ 4 \sin \theta \cos \theta = 2 \sin(2\theta) \] - Therefore, we can write: \[ \frac{dy}{d\theta} = 2 \sin(2\theta) + \sec^2 \theta \] ### Final Answer: \[ \frac{dy}{d\theta} = 2 \sin(2\theta) + \sec^2 \theta \]

To find \(\frac{dy}{d\theta}\) for the function \(y = 2 \sin^2 \theta + \tan \theta\), we will differentiate each term with respect to \(\theta\). ### Step-by-step Solution: 1. **Identify the function**: \[ y = 2 \sin^2 \theta + \tan \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

If "tan" 2 theta "tan" theta =1, "then" theta =

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

(1+tan^2theta) sin^2theta

If sin theta = x and sec theta = y , then tan theta is (a) xy (b) x/y (c) y/x (d) 1/(xy)

If x = a( sin theta - theta cos theta) and y = a ( cos theta + theta sin theta) " find " (dy)/(dx) at theta = pi/4

If y=sin^2 theta+cosec^2 theta, theta!=0, then (A) y=0 (B) yle2 (C) yge-2 (D) yge2

Solve 3tan^(2) theta-2 sin theta=0 .

y=1/((1+tan theta)^(sin theta-cos theta)+(cot theta)^(cos theta-cot theta))+ 1/((1+tan theta)^(cos theta-sin theta)+(cot theta)^(sin theta-cottheta)) +1/((1+tan theta)^(cos theta-cot theta)+(cot theta)^(cot theta-sin theta)) then (dy)/(dx) at theta=pi/3 is