Home
Class 11
PHYSICS
If y=2sinx, then (d^2y)/(dx^2) will be...

If `y=2sinx`, then `(d^2y)/(dx^2)` will be

A

`2cos x`

B

`2sin x`

C

`- 2sin x`

D

`sin x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = 2 \sin x \). We will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Given: \[ y = 2 \sin x \] To find the first derivative, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(2 \sin x) \] Using the constant multiple rule and the derivative of \( \sin x \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\sin x) = 2 \cos x \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now, we need to differentiate \( \frac{dy}{dx} \) to find the second derivative: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2 \cos x) \] Again, using the constant multiple rule and the derivative of \( \cos x \): \[ \frac{d^2y}{dx^2} = 2 \cdot \frac{d}{dx}(\cos x) = 2 \cdot (-\sin x) = -2 \sin x \] ### Final Answer Thus, the second derivative \( \frac{d^2y}{dx^2} \) is: \[ \frac{d^2y}{dx^2} = -2 \sin x \] ### Summary of Steps: 1. Differentiate \( y = 2 \sin x \) to find \( \frac{dy}{dx} = 2 \cos x \). 2. Differentiate \( \frac{dy}{dx} = 2 \cos x \) to find \( \frac{d^2y}{dx^2} = -2 \sin x \).

To solve the problem, we need to find the second derivative of the function \( y = 2 \sin x \). We will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Given: \[ y = 2 \sin x \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y=sinx , then (d^2y)/(dx^2) will be

If y=x^2sinx ,then (dy)/(dx) will be..

If y=2sinx ,then (dy)/(dx) will be

If y=sinx^(2) then (dy)/(dx)=

If y=x^3 then (d^2y)/(dx^2) is..

If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) is :-

If y=log x , find (d^2y)/(dx^2) .

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

If y=(x-x^2) , then find (d^2y)/(dx^2) .

If x=at^2 , y=at ,then (d^2y)/(dx^2)=