Home
Class 11
PHYSICS
If y=4cos4x find int y dx...

If `y=4cos4x` find `int y dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the integral of \( y = 4 \cos(4x) \), we will follow these steps: ### Step 1: Set up the integral We need to find the integral of \( y \) with respect to \( x \): \[ I = \int y \, dx = \int 4 \cos(4x) \, dx \] ### Step 2: Factor out the constant Since 4 is a constant, we can factor it out of the integral: \[ I = 4 \int \cos(4x) \, dx \] ### Step 3: Integrate \( \cos(4x) \) To integrate \( \cos(4x) \), we use the formula for the integral of \( \cos(ax) \), which is: \[ \int \cos(ax) \, dx = \frac{1}{a} \sin(ax) + C \] In our case, \( a = 4 \): \[ \int \cos(4x) \, dx = \frac{1}{4} \sin(4x) + C \] ### Step 4: Substitute back into the integral Now we substitute back into our integral: \[ I = 4 \left( \frac{1}{4} \sin(4x) + C \right) \] ### Step 5: Simplify the expression The \( 4 \) and \( \frac{1}{4} \) will cancel out: \[ I = \sin(4x) + C \] ### Final Answer Thus, the integral of \( y = 4 \cos(4x) \) with respect to \( x \) is: \[ \int y \, dx = \sin(4x) + C \]

To solve the problem of finding the integral of \( y = 4 \cos(4x) \), we will follow these steps: ### Step 1: Set up the integral We need to find the integral of \( y \) with respect to \( x \): \[ I = \int y \, dx = \int 4 \cos(4x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

If 4x+3y=log(4x-3y) , find (dy)/(dx)

int cos^4 x dx

y=x*cos x then find (d^2y)/(dx^(2)) .

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

If y=(tanx)^(logx)+cos^2(pi/4) , find (dy)/(dx)

If (cos"x")^y=(sin y)^x , find (dy)/(dx)

Find (dy)/(dx) at x=1 , y=pi/4 if sin^2 y+cos xy=k

If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4cos(x y))/(3cos(x y)-4sin(x y)) (c) (3cos(x y)+4sin(x y))/(4cos(x y)-3sin(x y)) (d) none

If cos (x+y)=y sin x then find dx/dy