Home
Class 11
PHYSICS
Evaluate :- int(0)^(1)(3x^(2)+4)dx...

Evaluate `:-`
`int_(0)^(1)(3x^(2)+4)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{1} (3x^2 + 4) \, dx \), we will follow these steps: ### Step 1: Break down the integral We can separate the integral into two parts: \[ I = \int_{0}^{1} 3x^2 \, dx + \int_{0}^{1} 4 \, dx \] ### Step 2: Evaluate the first integral For the first integral, we need to find: \[ \int 3x^2 \, dx \] Using the power rule for integration, which states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] we can compute: \[ \int 3x^2 \, dx = 3 \cdot \frac{x^{3}}{3} = x^3 \] Now we will evaluate this from 0 to 1: \[ \left[ x^3 \right]_{0}^{1} = 1^3 - 0^3 = 1 - 0 = 1 \] ### Step 3: Evaluate the second integral Now we evaluate the second integral: \[ \int 4 \, dx \] The integral of a constant \( c \) is given by: \[ \int c \, dx = cx + C \] So, \[ \int 4 \, dx = 4x \] Now we will evaluate this from 0 to 1: \[ \left[ 4x \right]_{0}^{1} = 4(1) - 4(0) = 4 - 0 = 4 \] ### Step 4: Combine the results Now we combine the results of both integrals: \[ I = 1 + 4 = 5 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{5} \]

To evaluate the integral \( I = \int_{0}^{1} (3x^2 + 4) \, dx \), we will follow these steps: ### Step 1: Break down the integral We can separate the integral into two parts: \[ I = \int_{0}^{1} 3x^2 \, dx + \int_{0}^{1} 4 \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(3)(x^(2)+1)dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx

1. int_(0)^(2)3x^(2)dx

int_(0)^(1) (1)/(x^(2) +2x+3)dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

Evaluate: int_(0)^1(dx)/(1+x^2)

Evaluate: int_(4)^(1)1/x dx

int_(0)^(1)(2x)/((1+x^(4)))dx

Evaluate int_(0)^(3)(x^(2)-4)dx