Home
Class 11
PHYSICS
If vec(A) is 2hat(i)+9hat(j)+4hat(k), th...

If `vec(A)` is `2hat(i)+9hat(j)+4hat(k)`, then `4vec(A)` will be `:`

A

`8hat(i)+16hat(j)+36hat(k)`

B

`8hat(i)+36hat(k)+16hat(j)`

C

`8hat(i)+9hat(j)+16hat(k)`

D

`8hat(i)+36hat(j)+16hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( 4\vec{A} \) given that \( \vec{A} = 2\hat{i} + 9\hat{j} + 4\hat{k} \). ### Step-by-step Solution: 1. **Identify the vector components**: We have the vector \( \vec{A} \) expressed in terms of its components: \[ \vec{A} = 2\hat{i} + 9\hat{j} + 4\hat{k} \] Here, the components are: - \( A_x = 2 \) (coefficient of \( \hat{i} \)) - \( A_y = 9 \) (coefficient of \( \hat{j} \)) - \( A_z = 4 \) (coefficient of \( \hat{k} \)) 2. **Multiply the vector by the scalar**: To find \( 4\vec{A} \), we multiply each component of \( \vec{A} \) by 4: \[ 4\vec{A} = 4(2\hat{i}) + 4(9\hat{j}) + 4(4\hat{k}) \] 3. **Calculate each component**: - For the \( \hat{i} \) component: \[ 4 \times 2 = 8 \] - For the \( \hat{j} \) component: \[ 4 \times 9 = 36 \] - For the \( \hat{k} \) component: \[ 4 \times 4 = 16 \] 4. **Combine the results**: Now, we can combine the results to express \( 4\vec{A} \): \[ 4\vec{A} = 8\hat{i} + 36\hat{j} + 16\hat{k} \] ### Final Answer: Thus, \( 4\vec{A} = 8\hat{i} + 36\hat{j} + 16\hat{k} \). ---

To solve the problem, we need to find \( 4\vec{A} \) given that \( \vec{A} = 2\hat{i} + 9\hat{j} + 4\hat{k} \). ### Step-by-step Solution: 1. **Identify the vector components**: We have the vector \( \vec{A} \) expressed in terms of its components: \[ \vec{A} = 2\hat{i} + 9\hat{j} + 4\hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP no 9 physics|10 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO 7 PHYSICS|4 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

The position vectors of points A, B, C and D are : vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k) vec(C ) = 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) Then the displacement vectors vec(AB) and vec(CD) are :