Home
Class 11
PHYSICS
The function f(x)=x^(5)-5x^(4)+5x^(3) fi...

The function `f(x)=x^(5)-5x^(4)+5x^(3)` find maximum and minimum value

A

3

B

2

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

`(dy)/(dx)=(d)/(dx)(x^(5)-5x^(4)+5x^(3)-10)=5x^(4)-20x^(3)+15x^(2)=0,x=3,0,1`
`(d^(2)y)/(dx^(2))lt0` at `x=1`
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP no 9 physics|10 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO 7 PHYSICS|4 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

For what values of x, the function f(x) = x^(5)-5x^(4)+5x^(3)-1 is maximum or minimum? Prove that at x = 0, the function is neither maximum nor minimum.

Find the points of local maxima, local minima and the points of inflection of the function f(x)=x^5-5x^4+5x^3-1. Also, find the corresponding local maximum and local minimum values.

Find the points of local maxima, local minima and the points of inflection of the function f(x)=x^5-5x^4+5x^3-1 . Also, find the corresponding local maximum and local minimum values

Find the points of local maxima, local minima and the points of inflection of the function f(x)=x^5-5x^4+5x^3-1 . Also, find the corresponding local maximum and local minimum values

Find the value of x for which the function (x^(3) - 3x + 4) is maximum or minimum.

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the cost function C(x)= x^(3)-5x^(2) + 3x+1 , then find the marginal cost function.

If x lies in first quadrant, find the maximum and minimum values of the function 4 sin x+3 cos x .

For the function f(x)=x+1/x x=1 is a point of maximum (b) x=-1 is a point of minimum (c) maximum value > minimum value (d) maximum value < minimum value

If f(x)=3x^4-5x^2+9, find f(x-1) .