Home
Class 11
PHYSICS
A man of mass 60kg is standing on a plat...

A man of mass `60kg` is standing on a platform executing SHM in the vertical plane. The displacement from the mean position varies as `y = 0.5sin(2pift)`. The value of `f`, for which the man will feel weightlessness at the highest point, is (`y` in metre)

A

`(g)/(4pi)`

B

`4pig`

C

`(sqrt(2)g)/(2pi)`

D

`2pisqrt(2g)`

Text Solution

Verified by Experts

The correct Answer is:
C

If he feels weightlessness then at the highest point, acceleration must be `g`.
`rArr g=omega ^(2)A`
`rArr omega = 2pif=sqrt(2g)`
`rArr f=(sqrt(2g))/(2pi)`
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 71|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise dpp 72|4 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise comprehension|127 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

The displacement of a particle from its mean position (in metre) is given by y=0.2 "sin" (10 pi t+ 1.5 pi) "cos" (10 pi t+1.5 pi) The motion of the particle is

A man of mass 60 kg is standing on a boat of mass 140 kg, which is at rest in still water. The man is initially at 20 m from the shore. He starts walking on the boat for 4 s with constant speed 1.5 m/s towards the shore. The final distance of the man from the shore is

A particle of mass 2 kg executing SHM has amplitude 10 cm and time period is 1 s.Find (i) the angular frequency (ii) the maximum speed (ii) the maximum acceleration (iv) the maximum restoring force (v) the speed when the displacement from the mean position is 8 cm (vi) the speed after (1)/(12) s the particle was at the extreme position (vii) the time taken by the particle to go directly from its mean position to half the amplitude (viii) the time taken by the particle to go directly from its exterme position to half the amplitude.

A man weighing 60kg stands on the horizontal platform of a spring balance. The platform starts executing simple harmonic motion of amplitude 0.1m and frequency (2)/(pi) . its which of the following statement is correct ?

A mass m is undergoing SHM in the verticl direction about the mean position y_(0) with amplitude A and anglular frequency omega . At a distance y form the mean position, the mass detached from the spring. Assume that th spring contracts and does not obstruct the motion of m . Find the distance y . (measured from the mean position). such that height h attained by the block is maximum (Aomega^(2) gt g) .

The displacement of a string is given by y(x,t)=0.06sin(2pix//3)cos(120pit) where x and y are in m and t in s. The lengthe of the string is 1.5m and its mass is 3.0xx10^(-2)kg.

Three man A, B & C of mass 40 kg, 50 kg & 60 kg are standing on a plank of mass 90 kg , which is kept on a smooth horizontal plane. If A & C exchange their position then mass B will shift :-

A man is standing on a road and observes that rain is failing at angle 45^(@) with the vertical. The man starts running on the road with constant acceleration 0.5m//s^(2) . After a certain time from the start of the motion, it appears to him that rain is still falling at angle 45^(@) with the vertical, with speed 2sqrt(2)m//s . Motion of the man is in the same vertical plane in which the rain is falling. Then which of the following staement(s) are true.

One end of a long string of linear mass density 10^(-2) kg m^(-1) is connected to an electrically driven tuning fork of frequency 150 Hz. The other end passes over a pulley and is tied to a pan containig a mass of 90 kg. the pulley end absorbs all the incoming energy so that reflected waves from this end have neglidible amplitude , At t =0, the left end (fork end ) of the string is at x=0 has a transverse displacement of 2.5 cm and is moving along positive y-direction. the amplitude of the wave is 5 cm. write down the transverse displacement y (in cetimetres) as function of x(in metres) and t (in seconds ) that describes the wave on the string.

A uniform solid cylinder of mass 5kg and radius 0.1m is resting on a horizontal platform (parallel to the x-y plane) and is free to rotate about its axis along the y-axis the platform is given a motion in the x direction given by x=0.2 cos (10t) m if there is no slipping then maximum torque acting on the cylinder during its motion is