To find the value of \( \sin 15^\circ \), we can use the sine subtraction formula. The sine subtraction formula states that:
\[
\sin(A - B) = \sin A \cos B - \cos A \sin B
\]
In this case, we can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Therefore, we have:
\[
\sin 15^\circ = \sin(45^\circ - 30^\circ)
\]
Now, applying the sine subtraction formula:
\[
\sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ
\]
Next, we need to substitute the known values of the sine and cosine for the angles involved:
- \( \sin 45^\circ = \frac{1}{\sqrt{2}} \)
- \( \cos 30^\circ = \frac{\sqrt{3}}{2} \)
- \( \cos 45^\circ = \frac{1}{\sqrt{2}} \)
- \( \sin 30^\circ = \frac{1}{2} \)
Now substituting these values into the equation:
\[
\sin 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)
\]
This simplifies to:
\[
\sin 15^\circ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}
\]
Now, we can combine the two fractions:
\[
\sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}
\]
To express this in a more simplified form, we can rationalize the denominator:
\[
\sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{(\sqrt{3} - 1)\sqrt{2}}{4}
\]
Now, we can approximate the values:
- \( \sqrt{3} \approx 1.732 \)
- \( \sqrt{2} \approx 1.414 \)
Substituting these approximations:
\[
\sin 15^\circ \approx \frac{(1.732 - 1) \cdot 1.414}{4} = \frac{0.732 \cdot 1.414}{4}
\]
Calculating this gives:
\[
\sin 15^\circ \approx \frac{1.033}{4} \approx 0.25825
\]
Thus, the value of \( \sin 15^\circ \) is approximately \( 0.258 \).
To find the value of \( \sin 15^\circ \), we can use the sine subtraction formula. The sine subtraction formula states that:
\[
\sin(A - B) = \sin A \cos B - \cos A \sin B
\]
In this case, we can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Therefore, we have:
...
Topper's Solved these Questions
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
CURRENT ELECTRICITY
RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
ELECTRO MAGNETIC WAVES
RESONANCE ENGLISH|Exercise Exercise 3|27 Videos
Similar Questions
Explore conceptually related problems
The value of sin 105^0 is
Using the formula cos (A+B) = cosA cosB -sin A sin B . find the value of sin 15^(@) .
. Find the value of sin 105^@
Find the value of sin 75^(@) sin 15 ^(@).
The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .
The value of sin(-150^(@)) is :
Find the value of sin 15o .
The value of 2 sin 15^(@).cos75^(@)
Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)
The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is
RESONANCE ENGLISH-DAILY PRACTICE PROBLEM-DPP.No.71