Home
Class 12
PHYSICS
Value of sin 15^@ is :...

Value of `sin 15^@` is :

A

`1`

B

`1//2`

C

`1//4`

D

`(sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 15^\circ \), we can use the sine subtraction formula. The sine subtraction formula states that: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] In this case, we can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Therefore, we have: \[ \sin 15^\circ = \sin(45^\circ - 30^\circ) \] Now, applying the sine subtraction formula: \[ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \] Next, we need to substitute the known values of the sine and cosine for the angles involved: - \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 30^\circ = \frac{1}{2} \) Now substituting these values into the equation: \[ \sin 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] This simplifies to: \[ \sin 15^\circ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} \] Now, we can combine the two fractions: \[ \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] To express this in a more simplified form, we can rationalize the denominator: \[ \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{(\sqrt{3} - 1)\sqrt{2}}{4} \] Now, we can approximate the values: - \( \sqrt{3} \approx 1.732 \) - \( \sqrt{2} \approx 1.414 \) Substituting these approximations: \[ \sin 15^\circ \approx \frac{(1.732 - 1) \cdot 1.414}{4} = \frac{0.732 \cdot 1.414}{4} \] Calculating this gives: \[ \sin 15^\circ \approx \frac{1.033}{4} \approx 0.25825 \] Thus, the value of \( \sin 15^\circ \) is approximately \( 0.258 \).

To find the value of \( \sin 15^\circ \), we can use the sine subtraction formula. The sine subtraction formula states that: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] In this case, we can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Therefore, we have: ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE ENGLISH|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

The value of sin 105^0 is

Using the formula cos (A+B) = cosA cosB -sin A sin B . find the value of sin 15^(@) .

. Find the value of sin 105^@

Find the value of sin 75^(@) sin 15 ^(@).

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

The value of sin(-150^(@)) is :

Find the value of sin 15o .

The value of 2 sin 15^(@).cos75^(@)

Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)

The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is