To solve the problem \( \sin(90^\circ + 2\theta) \), we can use the sine addition formula. Here are the steps to find the solution:
### Step 1: Use the Sine Addition Formula
The sine addition formula states that:
\[
\sin(A + B) = \sin A \cos B + \cos A \sin B
\]
In our case, let \( A = 90^\circ \) and \( B = 2\theta \).
### Step 2: Substitute the Values
Substituting \( A \) and \( B \) into the formula, we get:
\[
\sin(90^\circ + 2\theta) = \sin(90^\circ) \cos(2\theta) + \cos(90^\circ) \sin(2\theta)
\]
### Step 3: Evaluate the Sine and Cosine of 90 Degrees
We know that:
\[
\sin(90^\circ) = 1 \quad \text{and} \quad \cos(90^\circ) = 0
\]
Substituting these values into the equation gives:
\[
\sin(90^\circ + 2\theta) = 1 \cdot \cos(2\theta) + 0 \cdot \sin(2\theta)
\]
### Step 4: Simplify the Expression
This simplifies to:
\[
\sin(90^\circ + 2\theta) = \cos(2\theta)
\]
### Final Answer
Thus, the final result is:
\[
\sin(90^\circ + 2\theta) = \cos(2\theta)
\]
To solve the problem \( \sin(90^\circ + 2\theta) \), we can use the sine addition formula. Here are the steps to find the solution:
### Step 1: Use the Sine Addition Formula
The sine addition formula states that:
\[
\sin(A + B) = \sin A \cos B + \cos A \sin B
\]
In our case, let \( A = 90^\circ \) and \( B = 2\theta \).
...
Topper's Solved these Questions
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
CURRENT ELECTRICITY
RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
ELECTRO MAGNETIC WAVES
RESONANCE ENGLISH|Exercise Exercise 3|27 Videos
Similar Questions
Explore conceptually related problems
sin(90^circ+theta) is
If sintheta+costheta=sqrt(2)sin(90^@-theta) , determine cottheta .
The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is
The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in
Prove the following identities: (i) costhetasin(90^o-theta)+sinthetacos(90^o-theta)=1 (ii) (sin(90^o-theta))sintheta/(tantheta)-1=-sin^2theta (iii) (sin(90^o-theta)cos(90^o-theta))/(tantheta)=1-sin^2theta