Home
Class 12
PHYSICS
sin(90^circ+2theta) is...

`sin(90^circ+2theta)` is

A

`sin 2theta`

B

`cos 2theta`

C

`- cos 2theta`

D

`- sin 2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin(90^\circ + 2\theta) \), we can use the sine addition formula. Here are the steps to find the solution: ### Step 1: Use the Sine Addition Formula The sine addition formula states that: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] In our case, let \( A = 90^\circ \) and \( B = 2\theta \). ### Step 2: Substitute the Values Substituting \( A \) and \( B \) into the formula, we get: \[ \sin(90^\circ + 2\theta) = \sin(90^\circ) \cos(2\theta) + \cos(90^\circ) \sin(2\theta) \] ### Step 3: Evaluate the Sine and Cosine of 90 Degrees We know that: \[ \sin(90^\circ) = 1 \quad \text{and} \quad \cos(90^\circ) = 0 \] Substituting these values into the equation gives: \[ \sin(90^\circ + 2\theta) = 1 \cdot \cos(2\theta) + 0 \cdot \sin(2\theta) \] ### Step 4: Simplify the Expression This simplifies to: \[ \sin(90^\circ + 2\theta) = \cos(2\theta) \] ### Final Answer Thus, the final result is: \[ \sin(90^\circ + 2\theta) = \cos(2\theta) \]

To solve the problem \( \sin(90^\circ + 2\theta) \), we can use the sine addition formula. Here are the steps to find the solution: ### Step 1: Use the Sine Addition Formula The sine addition formula states that: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] In our case, let \( A = 90^\circ \) and \( B = 2\theta \). ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE ENGLISH|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

sin(90^circ+theta) is

If sintheta+costheta=sqrt(2)sin(90^@-theta) , determine cottheta .

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta) is positive for all theta in

Prove the following identities: (i) costhetasin(90^o-theta)+sinthetacos(90^o-theta)=1 (ii) (sin(90^o-theta))sintheta/(tantheta)-1=-sin^2theta (iii) (sin(90^o-theta)cos(90^o-theta))/(tantheta)=1-sin^2theta

Prove that : (sin \theta . sin(90^(@) - \theta))/(cot (90^(@) - \theta)) = 1 - sin^(2) \theta

(sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec"(90^(@)+theta)) .

sin(270^(@)-theta).sin(90^(@)-theta)-cos(270^(@)-theta).cos(90^(@)+theta)=

Prove that : (sinthetacos(90^0-theta)costheta)/(sin(90^0-theta))+(costhetasin(90^0-theta)sintheta)/(cos(90^0-theta))=1

Show that : (cot(90^(@)-theta)*sin(90^(@)-theta))/(sintheta)+(cot50^(@))/(tan40^(@))=2