To find the value of \( \sin(750^\circ) \), we can simplify the angle using the periodic properties of the sine function. The sine function has a period of \( 360^\circ \), which means that:
\[
\sin(\theta) = \sin(\theta + 360^\circ n)
\]
for any integer \( n \).
### Step-by-Step Solution:
1. **Reduce the Angle:**
We can reduce \( 750^\circ \) by subtracting multiples of \( 360^\circ \):
\[
750^\circ - 2 \times 360^\circ = 750^\circ - 720^\circ = 30^\circ
\]
Thus, we have:
\[
\sin(750^\circ) = \sin(30^\circ)
\]
2. **Find the Sine Value:**
Now, we need to find \( \sin(30^\circ) \). From trigonometric values, we know:
\[
\sin(30^\circ) = \frac{1}{2}
\]
3. **Conclusion:**
Therefore, the value of \( \sin(750^\circ) \) is:
\[
\sin(750^\circ) = \frac{1}{2}
\]
### Final Answer:
\[
\sin(750^\circ) = \frac{1}{2}
\]
Topper's Solved these Questions
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
CURRENT ELECTRICITY
RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
ELECTRO MAGNETIC WAVES
RESONANCE ENGLISH|Exercise Exercise 3|27 Videos
Similar Questions
Explore conceptually related problems
Prove that : sin 10^(@) + sin 20^(@) + sin 40^(@) + sin 50^(@) = sin 70^(@) + sin 80^(@).
The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .