To find the value of \( \cos\left(\frac{11\pi}{6}\right) \), we can follow these steps:
### Step 1: Rewrite the angle
We can express \( \frac{11\pi}{6} \) in a more manageable form. Notice that:
\[
\frac{11\pi}{6} = 2\pi - \frac{\pi}{6}
\]
This means we can use the cosine identity for angles in the form of \( 2\pi - \theta \).
### Step 2: Apply the cosine identity
Using the identity \( \cos(2\pi - \theta) = \cos(\theta) \), we can simplify:
\[
\cos\left(\frac{11\pi}{6}\right) = \cos\left(2\pi - \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)
\]
### Step 3: Find the cosine of \( \frac{\pi}{6} \)
We know that:
\[
\cos\left(\frac{\pi}{6}\right) = \cos(30^\circ)
\]
From trigonometric values, we have:
\[
\cos(30^\circ) = \frac{\sqrt{3}}{2}
\]
### Step 4: Conclusion
Thus, we find that:
\[
\cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}
\]
### Final Answer
The value of \( \cos\left(\frac{11\pi}{6}\right) \) is \( \frac{\sqrt{3}}{2} \).
---
Topper's Solved these Questions
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
CURRENT ELECTRICITY
RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
ELECTRO MAGNETIC WAVES
RESONANCE ENGLISH|Exercise Exercise 3|27 Videos
Similar Questions
Explore conceptually related problems
Approximate cos((11pi)/(36)) using differentials.
If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=
Find the value of the following: cos^(-1)(cos((13pi)/6))