Home
Class 12
PHYSICS
Evaluate int 2 sin(x)dx....

Evaluate `int 2 sin(x)dx`.

A

0

B

`(1)/(3)`

C

`(2)/(3)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int 2 \sin(x) \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \( I = \int 2 \sin(x) \, dx \). ### Step 2: Factor out the constant Since 2 is a constant, we can factor it out of the integral: \[ I = 2 \int \sin(x) \, dx \] ### Step 3: Integrate \( \sin(x) \) We know that the integral of \( \sin(x) \) is: \[ \int \sin(x) \, dx = -\cos(x) \] So, substituting this into our equation gives: \[ I = 2 \cdot (-\cos(x)) \] ### Step 4: Simplify the expression Now, simplifying this, we have: \[ I = -2 \cos(x) \] ### Step 5: Add the constant of integration Since this is an indefinite integral, we must add the constant of integration \( C \): \[ I = -2 \cos(x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int 2 \sin(x) \, dx = -2 \cos(x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE ENGLISH|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

Evaluate int x sin 3x dx .

Evaluate int x sin 3x dx .

Evaluate: int(2sin2x) \ dx

Evaluate: int2/(2+sin2x)dx

Evaluate: int2/(2+sin2x)dx

Evaluate int x sin(4x^(2)+7 ) dx

Evaluate: int(3+sin2x)dx and int (2-3cos2x) dx

Evaluate int\ x^7+sin2x\dx

Evaluate int e^(2x) sin 3x dx .

Evaluate int e^(2x) sin 3x dx .