To evaluate the integral \(\int \frac{1}{ax + b} \, dx\), we can follow these steps:
### Step 1: Substitution
Let \( u = ax + b \).
### Step 2: Differentiate \( u \)
Now, differentiate both sides with respect to \( x \):
\[
\frac{du}{dx} = a \implies du = a \, dx \implies dx = \frac{du}{a}
\]
### Step 3: Rewrite the Integral
Substituting \( u \) and \( dx \) into the integral, we get:
\[
\int \frac{1}{ax + b} \, dx = \int \frac{1}{u} \cdot \frac{du}{a}
\]
### Step 4: Factor out the Constant
Factor out the constant \( \frac{1}{a} \):
\[
= \frac{1}{a} \int \frac{1}{u} \, du
\]
### Step 5: Integrate
Now, we can integrate:
\[
= \frac{1}{a} \ln |u| + C
\]
### Step 6: Substitute Back
Substituting back \( u = ax + b \):
\[
= \frac{1}{a} \ln |ax + b| + C
\]
### Final Answer
Thus, the final result is:
\[
\int \frac{1}{ax + b} \, dx = \frac{1}{a} \ln |ax + b| + C
\]
---
To evaluate the integral \(\int \frac{1}{ax + b} \, dx\), we can follow these steps:
### Step 1: Substitution
Let \( u = ax + b \).
### Step 2: Differentiate \( u \)
Now, differentiate both sides with respect to \( x \):
\[
...
Topper's Solved these Questions
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
CURRENT ELECTRICITY
RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
ELECTRO MAGNETIC WAVES
RESONANCE ENGLISH|Exercise Exercise 3|27 Videos
Similar Questions
Explore conceptually related problems
Evaluate: int ((1)/(1+tan x))dx
Evaluate int ((1 - x)/(1 + x)) dx
Evaluate: int_(4)^(1)1/x dx
Evaluate: int(x+1)\ dx
Evaluate: int1/(a^x\ b^x)\ dx
Evaluate : int (1)/(" cos (x+a) . sin (x+b)") " dx "
Evaluate int(x+1)""dx
Evaluate : int _(-1) ^(1) e^(x) dx .
Evaluate: int1/(x^4+1)dx
Evaluate: int1/(x^4-1)dx
RESONANCE ENGLISH-DAILY PRACTICE PROBLEM-DPP.No.71