Home
Class 12
PHYSICS
Evaluate : int((1)/(ax + b)) dx....

Evaluate : `int((1)/(ax + b)) dx.`

A

`log_(e)(ax+b)+C`

B

`a log_(e) (ax+b)+C`

C

`C+(1)/(a) log_(e)(ax+b)`

D

`(1)/(b)log_(e)(ax+b)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \frac{1}{ax + b} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( u = ax + b \). ### Step 2: Differentiate \( u \) Now, differentiate both sides with respect to \( x \): \[ \frac{du}{dx} = a \implies du = a \, dx \implies dx = \frac{du}{a} \] ### Step 3: Rewrite the Integral Substituting \( u \) and \( dx \) into the integral, we get: \[ \int \frac{1}{ax + b} \, dx = \int \frac{1}{u} \cdot \frac{du}{a} \] ### Step 4: Factor out the Constant Factor out the constant \( \frac{1}{a} \): \[ = \frac{1}{a} \int \frac{1}{u} \, du \] ### Step 5: Integrate Now, we can integrate: \[ = \frac{1}{a} \ln |u| + C \] ### Step 6: Substitute Back Substituting back \( u = ax + b \): \[ = \frac{1}{a} \ln |ax + b| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{ax + b} \, dx = \frac{1}{a} \ln |ax + b| + C \] ---

To evaluate the integral \(\int \frac{1}{ax + b} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( u = ax + b \). ### Step 2: Differentiate \( u \) Now, differentiate both sides with respect to \( x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE ENGLISH|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int ((1)/(1+tan x))dx

Evaluate int ((1 - x)/(1 + x)) dx

Evaluate: int_(4)^(1)1/x dx

Evaluate: int(x+1)\ dx

Evaluate: int1/(a^x\ b^x)\ dx

Evaluate : int (1)/(" cos (x+a) . sin (x+b)") " dx "

Evaluate int(x+1)""dx

Evaluate : int _(-1) ^(1) e^(x) dx .

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4-1)dx