To solve the integral \( \int_{0}^{\frac{\pi}{2}} \cos(3t) \, dt \), we will follow these steps:
### Step 1: Set up the integral
We start with the integral:
\[
I = \int_{0}^{\frac{\pi}{2}} \cos(3t) \, dt
\]
### Step 2: Use substitution
Let us use the substitution \( u = 3t \). Then, we differentiate to find \( du \):
\[
du = 3 \, dt \quad \Rightarrow \quad dt = \frac{du}{3}
\]
### Step 3: Change the limits of integration
When \( t = 0 \):
\[
u = 3 \cdot 0 = 0
\]
When \( t = \frac{\pi}{2} \):
\[
u = 3 \cdot \frac{\pi}{2} = \frac{3\pi}{2}
\]
Thus, the new limits for \( u \) are from \( 0 \) to \( \frac{3\pi}{2} \).
### Step 4: Substitute into the integral
Now we substitute \( u \) and \( dt \) into the integral:
\[
I = \int_{0}^{\frac{3\pi}{2}} \cos(u) \cdot \frac{du}{3}
\]
This simplifies to:
\[
I = \frac{1}{3} \int_{0}^{\frac{3\pi}{2}} \cos(u) \, du
\]
### Step 5: Integrate \( \cos(u) \)
The integral of \( \cos(u) \) is \( \sin(u) \):
\[
I = \frac{1}{3} \left[ \sin(u) \right]_{0}^{\frac{3\pi}{2}}
\]
### Step 6: Evaluate the limits
Now we evaluate the sine function at the limits:
\[
I = \frac{1}{3} \left[ \sin\left(\frac{3\pi}{2}\right) - \sin(0) \right]
\]
We know that:
\[
\sin\left(\frac{3\pi}{2}\right) = -1 \quad \text{and} \quad \sin(0) = 0
\]
Thus:
\[
I = \frac{1}{3} \left[ -1 - 0 \right] = \frac{-1}{3}
\]
### Final Answer
The value of the integral \( \int_{0}^{\frac{\pi}{2}} \cos(3t) \, dt \) is:
\[
\boxed{-\frac{1}{3}}
\]
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \cos(3t) \, dt \), we will follow these steps:
### Step 1: Set up the integral
We start with the integral:
\[
I = \int_{0}^{\frac{\pi}{2}} \cos(3t) \, dt
\]
...
Topper's Solved these Questions
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.2|10 Videos
DAILY PRACTICE PROBLEM
RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
CURRENT ELECTRICITY
RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
ELECTRO MAGNETIC WAVES
RESONANCE ENGLISH|Exercise Exercise 3|27 Videos
Similar Questions
Explore conceptually related problems
int_(0)^(pi//2) cos 3x dx
int_(0)^(pi/2) cos 2x dx
value of int_0^((pi)/(2))cos3tdt is
The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is
The value of int_(0)^(pi)|cos x|^(3)dx is :
The value of int_(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is
The value of int_(0)^(pi//2)logsinxdx is equal to
Find the value of int_(0)^(pi//2)cos^(5)x sin ^(7)xdx
f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is
The value of int_(0)^(pi)abscosx^3dx is
RESONANCE ENGLISH-DAILY PRACTICE PROBLEM-DPP.No.71