Home
Class 12
PHYSICS
If vec(A)=hati +hat j and vec(B)=hati-ha...

If `vec(A)=hati +hat j` and `vec(B)=hati-hatj`
The value of `(vec(A)+vec(B)).(vec(A)-vec(B))` is :

A

`sqrt(2)`

B

0

C

`(1)/(2)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) where \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\). ### Step-by-Step Solution: 1. **Calculate \(\vec{A} + \vec{B}\)**: \[ \vec{A} + \vec{B} = (\hat{i} + \hat{j}) + (\hat{i} - \hat{j}) \] Combine the components: \[ = \hat{i} + \hat{j} + \hat{i} - \hat{j} = 2\hat{i} \] 2. **Calculate \(\vec{A} - \vec{B}\)**: \[ \vec{A} - \vec{B} = (\hat{i} + \hat{j}) - (\hat{i} - \hat{j}) \] Combine the components: \[ = \hat{i} + \hat{j} - \hat{i} + \hat{j} = 2\hat{j} \] 3. **Calculate the dot product \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\)**: \[ (\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = (2\hat{i}) \cdot (2\hat{j}) \] Using the property of dot products, where \(\hat{i} \cdot \hat{j} = 0\): \[ = 2 \cdot 2 \cdot (\hat{i} \cdot \hat{j}) = 4 \cdot 0 = 0 \] Thus, the value of \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) is **0**.

To solve the problem, we need to calculate the expression \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) where \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\). ### Step-by-Step Solution: 1. **Calculate \(\vec{A} + \vec{B}\)**: \[ \vec{A} + \vec{B} = (\hat{i} + \hat{j}) + (\hat{i} - \hat{j}) \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.3|20 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.4|9 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP.No.71|1 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE ENGLISH|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

Given, vec(a)= 3hat(i) - hat(j) and vec(b)= 2hat(i) + hat(j) - 3hat(k) . Express vec(b) = vec(b)_(1) + vec(b)_(2) where vec(b)_(1) is parallel to vec(a) and vec(b)_(2) is perpendicular to vec(a)

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec a= hat i- hat j and vec b=- hat j+2 hat k , find ( vec a-2 vec b)dot( vec a+ vec b)dot

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

If vec a=3 hat i+4 hat j\ a n d\ vec b= hat i+ hat j+ hat k ,\ find the value of | vec axx vec b|dot

If there are two vectors vec(A) and vec(B) such that vec(A)+vec(B)=hat(i)+2hat(j)+hat(k) and vec(A)-vec(B)=(hat(i)-vec(k)) , then choose the correct options.

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :