Home
Class 12
PHYSICS
In the dimension of a physical quantitie...

In the dimension of a physical quantities are given by `M^(0)L^(1)T^(0)` , then the physical quantity will be

A

pressure if `a=1, b= -1, c= -2`

B

velocity if `a=1, b=0, c= -1`

C

acceleration if `a=1, b=1, c= -2`

D

force if `a=0, b= -1, c= -2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the physical quantity corresponding to the given dimensions \( M^{0}L^{1}T^{0} \), we will analyze the dimensions step by step. ### Step-by-Step Solution: 1. **Understanding the Dimensions**: - The given dimensions are \( M^{0}L^{1}T^{0} \). - This means that the physical quantity does not depend on mass (M), depends linearly on length (L), and does not depend on time (T). 2. **Identifying the Physical Quantity**: - Since the dimension is \( L^{1} \), we are looking for a quantity that is measured in units of length. - Common physical quantities that depend only on length include distance, displacement, and certain types of linear measurements. 3. **Analyzing the Options**: - Let's consider the options provided in the question: - **Pressure**: The dimension of pressure is \( M^{1}L^{-1}T^{-2} \) (not matching). - **Velocity**: The dimension of velocity is \( M^{0}L^{1}T^{-1} \) (not matching). - **Acceleration**: The dimension of acceleration is \( M^{0}L^{1}T^{-2} \) (not matching). - **Force**: The dimension of force is \( M^{1}L^{1}T^{-2} \) (not matching). 4. **Conclusion**: - The only physical quantity that fits the dimension \( M^{0}L^{1}T^{0} \) is a quantity that is purely length-based, such as "length" itself or "displacement". - Therefore, the physical quantity corresponding to the dimension \( M^{0}L^{1}T^{0} \) is **length**.

To determine the physical quantity corresponding to the given dimensions \( M^{0}L^{1}T^{0} \), we will analyze the dimensions step by step. ### Step-by-Step Solution: 1. **Understanding the Dimensions**: - The given dimensions are \( M^{0}L^{1}T^{0} \). - This means that the physical quantity does not depend on mass (M), depends linearly on length (L), and does not depend on time (T). ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.26|8 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.27|20 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE ENGLISH|Exercise DPP No.24|9 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise High Level Problems (HIP)|19 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE ENGLISH|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

If the dimensions of a physical quantity are given by M^(x) L^(y) T^(z) , then physical quantity may be

If the dimension of a physical quantity are given by M^a L^b T^c, then the physical quantity will be

If the dimension of a physical quantity are given by M^a L^b T^c, then the physical quantity will be

If the dimension of a physical quantity are given by M^a L^b T^c, then the physical quantity will be

If the dimension of a physical quantity are given by M^a L^b T^c, then the physical quantity will be

What are dimensions of a physical quantity?

The dimensional formula of physical quantity is [M^(a)L^(b)T^(c)] .Then that physical quantity is

A fundamental physical quantity

Define elementary physical quantities .

Assertion if two physical quantities have same dimension, then they can be certainly added or subtracted because Reason if the dimension of both the quantities are same then both the physical quantities should be similar .

RESONANCE ENGLISH-DAILY PRACTICE PROBLEM-DPP No.25
  1. CE and DF are two walls of equal height (20 meter) from which two part...

    Text Solution

    |

  2. Protons and singly ionized atoms of U^(235) & U^(238) are passed in tu...

    Text Solution

    |

  3. In the figure shown, find out the value of theta[assume string to be t...

    Text Solution

    |

  4. The position x of a particle at time t is given by x = (V(0))/(a) (1 -...

    Text Solution

    |

  5. In the figure shown, the minimum force F to be applied perpendicular t...

    Text Solution

    |

  6. A block of mass 10 kg is released on a fixed wedge inside a cart which...

    Text Solution

    |

  7. A block is kept on a rough horizontal surface. A variable horizontal f...

    Text Solution

    |

  8. The work done by the force vec(F)=A(y^(2) hati+2x^(2)hatj), where A is...

    Text Solution

    |

  9. A particle moves with a simple harmonic motion in a straight line, in ...

    Text Solution

    |

  10. Binding energy per nucleon of fixed nucleus X^(A) is 6 MeV. It absorbs...

    Text Solution

    |

  11. A nuclear transformation is given by Y (n,alpha ) rarr.(3)Li^7 . The...

    Text Solution

    |

  12. A particle is subjected to two simple harmonic motions along x and y d...

    Text Solution

    |

  13. In the dimension of a physical quantities are given by M^(0)L^(1)T^(0)...

    Text Solution

    |

  14. For a particle in S.H.M. if the maximum acceleration is a and maximum ...

    Text Solution

    |

  15. The time taken by a particle performing SHM to pass from point A and B...

    Text Solution

    |

  16. A particle moving on x - axis has potential energy U = 2 - 20x + 5x^(2...

    Text Solution

    |

  17. A ray hits the y-axis making an angle theta with y-axis as shown in th...

    Text Solution

    |

  18. As the mass number A increases, which of the following quantities rela...

    Text Solution

    |

  19. Two charges 8 C and -6 C are placed with a distance of separation 'd' ...

    Text Solution

    |

  20. Block B of mass 2 kg rests on block A of mass 10 kg. All surfaces are ...

    Text Solution

    |