Home
Class 12
PHYSICS
A Bi^(210) radionuclide decays via the c...

A `Bi^(210)` radionuclide decays via the chain `Bi^(210)(beta^(-)-"decay")/(lambda_(1))Po^(210)(alpha-decay)/(lambda_(2)) Pb^(206)` (stable), where the decay constants are `lambda_(1) = 1.6 xx 10^(-6)s^(-1), T_(1//2) ~~ 5 days , lambda_(2) = = 5.8 xx 10^(-8)s^(-1), T_(1//2) ~~ 4.6` months. `alpha & beta` activites of the `1.00 mg` a month after its manufacture is `(x)/(5) xx 10^(11)` Find `x.2^((1)/(4.6)) = 0.86`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Calculate the initial number of Bismuth-210 atoms (N₀) Given: - Mass of Bi-210 = 1.00 mg = 1.00 x 10^(-3) g - Molar mass of Bi-210 = 210 g/mol - Avogadro's number (N_A) = 6.022 x 10^(23) atoms/mol The number of moles (n) of Bi-210 can be calculated as: \[ n = \frac{\text{mass}}{\text{molar mass}} = \frac{1.00 \times 10^{-3} \text{ g}}{210 \text{ g/mol}} = 4.76 \times 10^{-6} \text{ mol} \] Now, calculate the initial number of atoms (N₀): \[ N₀ = n \times N_A = 4.76 \times 10^{-6} \text{ mol} \times 6.022 \times 10^{23} \text{ atoms/mol} \approx 2.86 \times 10^{18} \text{ atoms} \] ### Step 2: Calculate the decay of Bi-210 after 1 month The decay constant (λ₁) for Bi-210 is given as: \[ \lambda_1 = 1.6 \times 10^{-6} \text{s}^{-1} \] Convert 1 month to seconds: \[ 1 \text{ month} = 30 \text{ days} \times 24 \text{ hours/day} \times 3600 \text{ seconds/hour} = 2.628 \times 10^{6} \text{ seconds} \] Now, calculate the number of Bi-210 atoms remaining after 1 month (N_t): \[ N_t = N₀ e^{-\lambda_1 t} = 2.86 \times 10^{18} e^{-1.6 \times 10^{-6} \times 2.628 \times 10^{6}} \] Calculating the exponent: \[ -\lambda_1 t = -1.6 \times 10^{-6} \times 2.628 \times 10^{6} \approx -4.20 \] Now, calculating N_t: \[ N_t \approx 2.86 \times 10^{18} e^{-4.20} \approx 2.86 \times 10^{18} \times 0.015 \approx 4.29 \times 10^{16} \text{ atoms} \] ### Step 3: Calculate the beta activity (A₁) The beta activity (A₁) is given by: \[ A_1 = \lambda_1 N_t = 1.6 \times 10^{-6} \text{s}^{-1} \times 4.29 \times 10^{16} \text{ atoms} \approx 0.6864 \times 10^{11} \text{ disintegrations/second} \] ### Step 4: Calculate the decay of Po-210 after 1 month The decay constant (λ₂) for Po-210 is given as: \[ \lambda_2 = 5.8 \times 10^{-8} \text{s}^{-1} \] Now, calculate the number of Po-210 atoms produced from the decay of Bi-210: \[ N_{Po} = N₀ - N_t = 2.86 \times 10^{18} - 4.29 \times 10^{16} \approx 2.82 \times 10^{18} \text{ atoms} \] Now, calculate the number of Po-210 atoms remaining after 1 month: \[ N_{Po,t} = N_{Po} e^{-\lambda_2 t} = 2.82 \times 10^{18} e^{-5.8 \times 10^{-8} \times 2.628 \times 10^{6}} \] Calculating the exponent: \[ -\lambda_2 t = -5.8 \times 10^{-8} \times 2.628 \times 10^{6} \approx -0.152 \] Now, calculating N_{Po,t}: \[ N_{Po,t} \approx 2.82 \times 10^{18} e^{-0.152} \approx 2.82 \times 10^{18} \times 0.858 \approx 2.42 \times 10^{18} \text{ atoms} \] ### Step 5: Calculate the alpha activity (A₂) The alpha activity (A₂) is given by: \[ A_2 = \lambda_2 N_{Po,t} = 5.8 \times 10^{-8} \text{s}^{-1} \times 2.42 \times 10^{18} \text{ atoms} \approx 1.40 \times 10^{11} \text{ disintegrations/second} \] ### Step 6: Total activity The total activity (A_total) is: \[ A_{total} = A_1 + A_2 \approx 0.6864 \times 10^{11} + 1.40 \times 10^{11} \approx 2.0864 \times 10^{11} \text{ disintegrations/second} \] ### Step 7: Find x We know that: \[ A_{total} = \frac{x}{5} \times 10^{11} \] Setting this equal to our total activity: \[ 2.0864 \times 10^{11} = \frac{x}{5} \times 10^{11} \] Solving for x: \[ x = 2.0864 \times 5 \approx 10.432 \approx 10 \] ### Final Answer Thus, the value of x is approximately **10**. ---

To solve the problem, we will follow these steps: ### Step 1: Calculate the initial number of Bismuth-210 atoms (N₀) Given: - Mass of Bi-210 = 1.00 mg = 1.00 x 10^(-3) g - Molar mass of Bi-210 = 210 g/mol - Avogadro's number (N_A) = 6.022 x 10^(23) atoms/mol ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR PHYSICS

    RESONANCE ENGLISH|Exercise Exercise-2 Part-3 One more than one options correct type|7 Videos
  • NUCLEAR PHYSICS

    RESONANCE ENGLISH|Exercise Exercise-2 Part-4 Comprehension|6 Videos
  • NUCLEAR PHYSICS

    RESONANCE ENGLISH|Exercise Exercise 2 Part-1 Only one option correct type|20 Videos
  • GRAVITATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS|16 Videos
  • REVISION DPP

    RESONANCE ENGLISH|Exercise All Questions|463 Videos

Similar Questions

Explore conceptually related problems

Find the ratio of frequency of violet light (lambda_(1) = 4.10 xx 10^(-5) cm) to that of red light (lambda_(2) = 6.56 xx 10^(-5) cm) Also determine the ratio of energies carried by them

The decay constant of Ra^(226) is 1.37xx10^(-11)s^(-1) . A sample of Ra^(226) having an activity of 1.5 millicurie will contain

The average (mean) life of a radio nuclide which decays by parallel path is Aoverset(lambda_(1))(rarr)B : lambda_(1)=1.8xx10^(-2)sec^(-1) 2Aoverset(lambda_(2))(rarr)B , lambda_(2)=10^(-3)sec^(-1)

The decay constant for an alpha- decay of Th^(232) is 1.58xx10^(-10)s^(-1) . How many alpha- decays occur from 1 g sample in 365 days ?

They decay constant of radioactive element is 1.5xx10^(-9)s^(-1) Its mens-life (in second) will be

The first order rate constant for the decomposition of N_(2)O_(5) is 6.2 xx 10^(-4) sec^(-1) . The t_(1//2) of decomposition is

The equation (x^(2))/(10-lambda)+(y^(2))/(6-lambda)=1 represents

At time t=0 N_(1) nuclei of decay constant lambda_(1)& N_(2) nuclei of decay constant lambda_(2) are mixed. The decay rate of the mixture at time 't' is:

Plutonium has atomic mass 210 and a decay constant equal to 5.8 xx 10^(-8)s^(-1) . The number of alpha -particles emitted per second by 1 mg plutonium is (Avogadro's constant = 6.0 xx 10^(23) ).

In a radioactive material the activity at time t_(1) is R_(1) and at a later time t_(2) , it is R_(2) . If the decay constant of the material is lambda , then