Home
Class 12
PHYSICS
The .(92)U^(235) absorbs a slow neturon ...

The `._(92)U^(235)` absorbs a slow neturon (thermal neutron) & undergoes a fission represented by `._(92)U^(235)+._(0)n^(1)rarr._(92)U^(236)rarr._(56)Ba^(141)+_(36)Kr^(92)+3_(0)n^(1)+E`. Calculate:
The energy released when `1 g` of `._(92)U^(235)` undergoes complete fission in `N` if `m=[N]` then find `(m-2)/(5)`. `[N]` greatest integer
Given
`._(92)U^(235)=235.1175"amu (atom)"`,
`._(56)Ba^(141)=140.9577 "amu (atom)"`,
`._(36)r^(92)=91.9263 "amu(atom)" , ._(0)n^(1)=1.00898 "amu", 1 "amu"=931 MeV//C^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the energy released when 1 gram of Uranium-235 undergoes complete fission. We will follow these steps: ### Step 1: Write down the reaction and the masses involved The fission reaction is: \[ _{92}^{235}U + _{0}^{1}n \rightarrow _{56}^{141}Ba + _{36}^{92}Kr + 3 \times _{0}^{1}n + E \] The given masses are: - Mass of \( _{92}^{235}U = 235.1175 \, \text{amu} \) - Mass of \( _{56}^{141}Ba = 140.9577 \, \text{amu} \) - Mass of \( _{36}^{92}Kr = 91.9263 \, \text{amu} \) - Mass of neutron \( _{0}^{1}n = 1.00898 \, \text{amu} \) ### Step 2: Calculate the mass defect The mass defect (\(\Delta m\)) can be calculated using the formula: \[ \Delta m = \text{mass of reactants} - \text{mass of products} \] The mass of reactants is: \[ \text{mass of } U + \text{mass of neutron} = 235.1175 + 1.00898 = 236.12648 \, \text{amu} \] The mass of products is: \[ \text{mass of } Ba + \text{mass of } Kr + 3 \times \text{mass of neutron} = 140.9577 + 91.9263 + 3 \times 1.00898 \] Calculating the mass of products: \[ = 140.9577 + 91.9263 + 3.02694 = 235.91094 \, \text{amu} \] Now, calculate the mass defect: \[ \Delta m = 236.12648 - 235.91094 = 0.21554 \, \text{amu} \] ### Step 3: Calculate the energy released The energy released (\(E\)) can be calculated using the mass-energy equivalence: \[ E = \Delta m \times 931 \, \text{MeV/amu} \] Substituting the values: \[ E = 0.21554 \times 931 \approx 200.57 \, \text{MeV} \] ### Step 4: Calculate the number of fissions in 1 gram of \( _{92}^{235}U \) The number of moles of \( _{92}^{235}U \) in 1 gram is given by: \[ n = \frac{1 \, \text{g}}{235.1175 \, \text{g/mol}} \approx 0.00425 \, \text{mol} \] Using Avogadro's number (\(N_A \approx 6.022 \times 10^{23} \, \text{atoms/mol}\)), the number of atoms in 1 gram of \( _{92}^{235}U \) is: \[ N = n \times N_A \approx 0.00425 \times 6.022 \times 10^{23} \approx 2.56 \times 10^{21} \, \text{atoms} \] ### Step 5: Calculate the total energy released The total energy released when 1 gram of \( _{92}^{235}U \) undergoes complete fission is: \[ \text{Total Energy} = N \times E \approx 2.56 \times 10^{21} \times 200.57 \, \text{MeV} \] Convert MeV to Joules (1 MeV = \(1.602 \times 10^{-13} \, \text{J}\)): \[ \text{Total Energy} \approx 2.56 \times 10^{21} \times 200.57 \times 1.602 \times 10^{-13} \approx 8.20 \times 10^{6} \, \text{J} \] ### Step 6: Convert to Megawatt-hours To convert Joules to Megawatt-hours: \[ \text{Energy in MWh} = \frac{8.20 \times 10^{6}}{3.6 \times 10^{6}} \approx 2.28 \, \text{MWh} \] ### Step 7: Find \(N\) and \(m\) Since \(N\) represents the energy released in MWh, we take the greatest integer: \[ N \approx 2 \] Thus, \(m = N\). ### Step 8: Calculate \((m-2)/5\) \[ \frac{m-2}{5} = \frac{2-2}{5} = 0 \] ### Final Answer The final answer is: \[ \frac{m-2}{5} = 0 \]

To solve the problem, we need to calculate the energy released when 1 gram of Uranium-235 undergoes complete fission. We will follow these steps: ### Step 1: Write down the reaction and the masses involved The fission reaction is: \[ _{92}^{235}U + _{0}^{1}n \rightarrow _{56}^{141}Ba + _{36}^{92}Kr + 3 \times _{0}^{1}n + E \] The given masses are: ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR PHYSICS

    RESONANCE ENGLISH|Exercise Exercise-2 Part-3 One more than one options correct type|7 Videos
  • NUCLEAR PHYSICS

    RESONANCE ENGLISH|Exercise Exercise-2 Part-4 Comprehension|6 Videos
  • NUCLEAR PHYSICS

    RESONANCE ENGLISH|Exercise Exercise 2 Part-1 Only one option correct type|20 Videos
  • GRAVITATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS|16 Videos
  • REVISION DPP

    RESONANCE ENGLISH|Exercise All Questions|463 Videos

Similar Questions

Explore conceptually related problems

In equation ._(92)U^(235) + ._(0)n^1 to ._(56)Ba^(144) + ._(36)Kr^(89) + X : X is-

._(92)^(235)U+_(0)^(1)n rarr _(56)^(139)Ba +_(36)^(94)Kr +3_(0)^(1)n+200MeV Total energy released (in MeV) after 5^(th) stage of fission is:

Fill in the blank ""_(92)U^(235) +""_(0)n^(1) to ? +""_(36)^(92)Kr + 3""_(0)^(1)n

for nuclear reaction : ._(92)U^(235)+._(0)n^(1)to._(56)Ba^(144)+.......+3_(0)n^(1)

U^(235) + n^(1)rarr fission product + neutron + 3.2 xx 10^(-11)J . The energy released , when 1g of U^(235) finally undergoes fission , is

Complete the equation for the following fission process ._92 U^235 ._0 n^1 rarr ._38 Sr^90 +.... .

Calculate the energy released by fission from 2 gm of ._92U^235 in KWH. Given that the energy released per fission is 200 Mev.

Calculate the energy released by fission from 2 g of ._92^235U in k Wh. Given that the energy released per fission is 200 Mev.

The number of neutrons released when ._92 U^235 undergoes fission by absorbing ._0 n^1 and (._56 Ba^144 + ._36 Kr^89) are formed, is.

a. ._(92)U^(235)+._(0)n^(1)rarr (52)A^(137)+._(40)B^(97)+.......... b. ._(34)Se^(84)rarr 2 ._(-1)e^(0)+..........