Home
Class 12
MATHS
If alpha,beta are the roots of equation ...

If `alpha,beta` are the roots of equation `x^(2)-10x+2=0` and `a_(n)=alpha^(n)-beta^(n)` then `sum_(n=1)^(50)n.((a_(n+1)+2a_(n-1))/(a_(n)))` is more than (a)12500 (b)12250 (c)12750 (d)12000

A

12500

B

12250

C

12750

D

12000

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: 1. **Identify the roots of the quadratic equation**: The given equation is \( x^2 - 10x + 2 = 0 \). We can find the roots \( \alpha \) and \( \beta \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -10, c = 2 \). Substituting these values: \[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{10 \pm \sqrt{100 - 8}}{2} = \frac{10 \pm \sqrt{92}}{2} = \frac{10 \pm 2\sqrt{23}}{2} = 5 \pm \sqrt{23} \] Thus, \( \alpha = 5 + \sqrt{23} \) and \( \beta = 5 - \sqrt{23} \). 2. **Define \( a_n \)**: We have \( a_n = \alpha^n - \beta^n \). 3. **Set up the summation**: We need to evaluate: \[ \sum_{n=1}^{50} n \cdot \frac{a_{n+1} + 2a_{n-1}}{a_n} \] 4. **Express \( a_{n+1} \) and \( a_{n-1} \)**: - \( a_{n+1} = \alpha^{n+1} - \beta^{n+1} \) - \( a_{n-1} = \alpha^{n-1} - \beta^{n-1} \) 5. **Substitute into the summation**: \[ \sum_{n=1}^{50} n \cdot \frac{(\alpha^{n+1} - \beta^{n+1}) + 2(\alpha^{n-1} - \beta^{n-1})}{\alpha^n - \beta^n} \] 6. **Simplify the expression**: \[ = \sum_{n=1}^{50} n \cdot \frac{\alpha^{n+1} + 2\alpha^{n-1} - \beta^{n+1} - 2\beta^{n-1}}{\alpha^n - \beta^n} \] Factor out common terms: \[ = \sum_{n=1}^{50} n \cdot \frac{\alpha^{n-1}(\alpha + 2) - \beta^{n-1}(\beta + 2)}{\alpha^n - \beta^n} \] 7. **Use the property of roots**: Since \( \alpha \) and \( \beta \) are roots of the equation, we can express \( \alpha^2 + 2 \) and \( \beta^2 + 2 \) in terms of \( \alpha \) and \( \beta \): - From the equation \( x^2 - 10x + 2 = 0 \), we have: \[ \alpha^2 = 10\alpha - 2 \quad \text{and} \quad \beta^2 = 10\beta - 2 \] Thus, \[ \alpha^2 + 2 = 10\alpha \quad \text{and} \quad \beta^2 + 2 = 10\beta \] 8. **Substitute back into the summation**: \[ = \sum_{n=1}^{50} n \cdot \frac{10(\alpha^{n-1} - \beta^{n-1})}{\alpha^n - \beta^n} \] 9. **Recognize the pattern**: Notice that \( \frac{a_n}{a_n} = 1 \), leading to: \[ = 10 \sum_{n=1}^{50} n \] 10. **Calculate the sum of the first 50 natural numbers**: \[ \sum_{n=1}^{50} n = \frac{n(n+1)}{2} = \frac{50 \cdot 51}{2} = 1275 \] 11. **Final calculation**: \[ 10 \cdot 1275 = 12750 \] Thus, the final answer is \( 12750 \), which is more than \( 12750 \). **Answer**: (c) 12750

To solve the problem, we need to follow these steps: 1. **Identify the roots of the quadratic equation**: The given equation is \( x^2 - 10x + 2 = 0 \). We can find the roots \( \alpha \) and \( \beta \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -10, c = 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If ""_(alpha)and _(beta) are the roots of equation x^(2)-3x+1=0and a_(n)=alpha^n+beta^(n),ninN then value of (a_(7)+a_(5))/(a_(6))=

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

if alpha , beta be roots of equation 375 x^2 -25 x -2 = 0 and s_n = alpha^n + beta^n then lim_(n->oo) (sum_(r=1)^n S_r) = .......

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?

If alpha, beta be the real roots of ax^2+bx+c=0 , and s_n=alpha^n + beta^n then prove that as_n + bs_(n-1)+cs_(n-2)=0 .for all n in N .

RESONANCE ENGLISH-TEST PAPERS-Math
  1. Let a funtion f defined on te set of all integers satisfy f(0)ne 0 ,f(...

    Text Solution

    |

  2. if f:RtoR is defined as f(x)=e^(|x|)-e^(-x) then the correct statement...

    Text Solution

    |

  3. If alpha,beta are the roots of equation x^(2)-10x+2=0 and a(n)=alpha^(...

    Text Solution

    |

  4. (a^(logb x))^2-5x^(logb a)+6=0

    Text Solution

    |

  5. The number N=(1+2log(3)2)/((1+log(3)2)^(2))+(log(6)2)^(2) when simplif...

    Text Solution

    |

  6. The equation (log(8)((8)/(x^(2))))/((log(8)x)^(2))=3 has

    Text Solution

    |

  7. Which of the following is not a rational number. a.sin (tan^(-1) 3 + ...

    Text Solution

    |

  8. If S is the set of all real x such that (2x-1)/(2x^3+3x^2+x) is (-oo,-...

    Text Solution

    |

  9. The equation x^3/4((log)2x)^(2+(log)2x-5/4)=sqrt(2) has at least one r...

    Text Solution

    |

  10. The quadratic equation ax^(2)+bx+c=0 has real roots if:

    Text Solution

    |

  11. Let Delta^(2) be the discriminant and alpha,beta be the roots of the e...

    Text Solution

    |

  12. For which of the following graphs the quadratic expression y=ax^(2)+bx...

    Text Solution

    |

  13. if (3sin^(-1)x+pix-pi)^(2)+{sin(cos^(-1)((x)/(5)))}^(2)-2sin(cos^(-1)(...

    Text Solution

    |

  14. For the A.P given by a(1),a(2). . .a(n) . . . ., the equation satisfi...

    Text Solution

    |

  15. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  16. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  17. The value of lamda so that the matric A^(-1)-lamdaI is singular where ...

    Text Solution

    |

  18. Let F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1] and G(beta)=[...

    Text Solution

    |

  19. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  20. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |