Home
Class 12
MATHS
The number N=(1+2log(3)2)/((1+log(3)2)^(...

The number `N=(1+2log_(3)2)/((1+log_(3)2)^(2))+(log_(6)2)^(2)` when simplified reduces to:

A

A prime number

B

an irrational number

C

a real which is less than `log_(3)pi`

D

a real which is greater than `log_(7)6`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( N = \frac{1 + 2 \log_3 2}{(1 + \log_3 2)^2} + (\log_6 2)^2 \), we will follow these steps: ### Step 1: Rewrite \( \log_6 2 \) Using the change of base formula, we can express \( \log_6 2 \) as: \[ \log_6 2 = \frac{\log_2 2}{\log_2 6} = \frac{1}{\log_2 6} \] Now, we can express \( \log_2 6 \) as: \[ \log_2 6 = \log_2 (2 \cdot 3) = \log_2 2 + \log_2 3 = 1 + \log_2 3 \] Thus, \[ \log_6 2 = \frac{1}{1 + \log_2 3} \] ### Step 2: Substitute \( \log_3 2 \) Next, we can express \( \log_3 2 \) in terms of \( \log_2 3 \): \[ \log_3 2 = \frac{1}{\log_2 3} \] Let \( t = \log_2 3 \). Then, we have: \[ \log_3 2 = \frac{1}{t} \] ### Step 3: Substitute into \( N \) Now substituting \( \log_3 2 \) and \( \log_6 2 \) into \( N \): \[ N = \frac{1 + 2 \cdot \frac{1}{t}}{(1 + \frac{1}{t})^2} + \left(\frac{1}{1+t}\right)^2 \] This simplifies to: \[ N = \frac{1 + \frac{2}{t}}{\left(1 + \frac{1}{t}\right)^2} + \frac{1}{(1+t)^2} \] ### Step 4: Simplify the first term The denominator can be simplified: \[ \left(1 + \frac{1}{t}\right)^2 = \left(\frac{t+1}{t}\right)^2 = \frac{(t+1)^2}{t^2} \] Thus, the first term becomes: \[ \frac{1 + \frac{2}{t}}{\frac{(t+1)^2}{t^2}} = \frac{(1 + \frac{2}{t}) \cdot t^2}{(t+1)^2} = \frac{t^2 + 2t}{(t+1)^2} \] ### Step 5: Combine the terms Now we can write \( N \) as: \[ N = \frac{t^2 + 2t}{(t+1)^2} + \frac{1}{(1+t)^2} \] Finding a common denominator: \[ N = \frac{t^2 + 2t + 1}{(t+1)^2} \] This simplifies to: \[ N = \frac{(t+1)^2}{(t+1)^2} = 1 \] ### Final Result Thus, the simplified value of \( N \) is: \[ \boxed{1} \]

To simplify the expression \( N = \frac{1 + 2 \log_3 2}{(1 + \log_3 2)^2} + (\log_6 2)^2 \), we will follow these steps: ### Step 1: Rewrite \( \log_6 2 \) Using the change of base formula, we can express \( \log_6 2 \) as: \[ \log_6 2 = \frac{\log_2 2}{\log_2 6} = \frac{1}{\log_2 6} \] Now, we can express \( \log_2 6 \) as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

The value of (1+2(log_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

1-log2+((log2)^2)/(2!) -(log2)^3/(3!)+....oo

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve (log)_2(3x-2)=(log)_(1/2)x

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

The value of x, log_(1/2)x >= log_(1/3)x is

Find x if log_(2) log_(1//2) log_(3) x gt 0

RESONANCE ENGLISH-TEST PAPERS-Math
  1. If alpha,beta are the roots of equation x^(2)-10x+2=0 and a(n)=alpha^(...

    Text Solution

    |

  2. (a^(logb x))^2-5x^(logb a)+6=0

    Text Solution

    |

  3. The number N=(1+2log(3)2)/((1+log(3)2)^(2))+(log(6)2)^(2) when simplif...

    Text Solution

    |

  4. The equation (log(8)((8)/(x^(2))))/((log(8)x)^(2))=3 has

    Text Solution

    |

  5. Which of the following is not a rational number. a.sin (tan^(-1) 3 + ...

    Text Solution

    |

  6. If S is the set of all real x such that (2x-1)/(2x^3+3x^2+x) is (-oo,-...

    Text Solution

    |

  7. The equation x^3/4((log)2x)^(2+(log)2x-5/4)=sqrt(2) has at least one r...

    Text Solution

    |

  8. The quadratic equation ax^(2)+bx+c=0 has real roots if:

    Text Solution

    |

  9. Let Delta^(2) be the discriminant and alpha,beta be the roots of the e...

    Text Solution

    |

  10. For which of the following graphs the quadratic expression y=ax^(2)+bx...

    Text Solution

    |

  11. if (3sin^(-1)x+pix-pi)^(2)+{sin(cos^(-1)((x)/(5)))}^(2)-2sin(cos^(-1)(...

    Text Solution

    |

  12. For the A.P given by a(1),a(2). . .a(n) . . . ., the equation satisfi...

    Text Solution

    |

  13. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  14. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  15. The value of lamda so that the matric A^(-1)-lamdaI is singular where ...

    Text Solution

    |

  16. Let F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1] and G(beta)=[...

    Text Solution

    |

  17. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  18. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  19. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  20. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |