Home
Class 12
MATHS
if (3sin^(-1)x+pix-pi)^(2)+{sin(cos^(-1)...

if `(3sin^(-1)x+pix-pi)^(2)+{sin(cos^(-1)((x)/(5)))}^(2)-2sin(cos^(-1)((x)/(5)))=-1` then which of the following is/are Correct?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (3 \sin^{-1}(x) + \pi x - \pi)^2 + \left(\sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right)\right)^2 - 2 \sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right) = -1, \] we will break it down step by step. ### Step 1: Simplify the equation We can rewrite the equation as follows: \[ (3 \sin^{-1}(x) + \pi x - \pi)^2 + \left(\sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right)\right)^2 - 2 \sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right) + 1 = 0. \] ### Step 2: Analyze the first part Let’s denote: \[ A = 3 \sin^{-1}(x) + \pi x - \pi. \] Thus, we have: \[ A^2 + \left(\sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right)\right)^2 - 2 \sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right) + 1 = 0. \] ### Step 3: Solve for the first equation For \(A^2 = 0\), we need: \[ 3 \sin^{-1}(x) + \pi x - \pi = 0. \] Rearranging gives: \[ 3 \sin^{-1}(x) = \pi - \pi x. \] ### Step 4: Solve for \(x\) Dividing both sides by 3: \[ \sin^{-1}(x) = \frac{\pi - \pi x}{3}. \] Taking the sine of both sides: \[ x = \sin\left(\frac{\pi - \pi x}{3}\right). \] ### Step 5: Analyze the second part Now, we analyze the second part: \[ \sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right) = \sqrt{1 - \left(\frac{x}{5}\right)^2}. \] Thus, we can rewrite the second part of the equation: \[ \left(\sqrt{1 - \left(\frac{x}{5}\right)^2}\right)^2 - 2\sqrt{1 - \left(\frac{x}{5}\right)^2} + 1 = 0. \] This simplifies to: \[ 1 - \left(\frac{x}{5}\right)^2 - 2\sqrt{1 - \left(\frac{x}{5}\right)^2} + 1 = 0. \] ### Step 6: Solve the quadratic equation This can be rearranged to: \[ 2 - \left(\frac{x}{5}\right)^2 - 2\sqrt{1 - \left(\frac{x}{5}\right)^2} = 0. \] Let \(y = \sqrt{1 - \left(\frac{x}{5}\right)^2}\), then we have: \[ 2 - \left(\frac{x}{5}\right)^2 - 2y = 0. \] ### Step 7: Find solutions From the first equation, we found \(x = \frac{1}{2}\). From the second part, we find that: \[ \frac{x}{5} = 0 \implies x = 0. \] ### Conclusion Since the two equations yield different values for \(x\) (0 and \(\frac{1}{2}\)), there are no common solutions. Therefore, the correct option is: **D: No solution.**

To solve the equation \[ (3 \sin^{-1}(x) + \pi x - \pi)^2 + \left(\sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right)\right)^2 - 2 \sin\left(\cos^{-1}\left(\frac{x}{5}\right)\right) = -1, \] we will break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

If x=2cos^(-1)(1/2)+sin^(-1)(1/(sqrt(2)))+tan^(-1)(sqrt(3))\ a n d\ y=cos(1/2sin^(-1)(sin(x/2))) then which of the following statement holds good? a. y=cos((3pi)/16) b. y=cos((5pi)/16) c. x=4cos^(-1)y d. none of these

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

Let P(x)=cot^(2)x ((1+tanx+tan^(2)x)/(1+cot x+ cot^(2)x))+((cos x-cos 3x+sin3x-sin x)/(2(sin 2x+cos2x)))^(2) . Then, which of the following is (are) correct ?

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

Let t_(1)= (sin^(-1)x)^(sin^(-1)x),t_(2)= (sin^(-1) x)^(cos^(-1)x),t_(3) = (cos^(-1)x)^(sin^(-1)x),t_(4) = (cos^(-1)x)^(cos^(-1)x) , Match the follwing items of Column I with Column II

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

If sin^(-1)(5/x)+cos^(-1)(x/5)=pi/2 ,then find x.

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

RESONANCE ENGLISH-TEST PAPERS-Math
  1. Let Delta^(2) be the discriminant and alpha,beta be the roots of the e...

    Text Solution

    |

  2. For which of the following graphs the quadratic expression y=ax^(2)+bx...

    Text Solution

    |

  3. if (3sin^(-1)x+pix-pi)^(2)+{sin(cos^(-1)((x)/(5)))}^(2)-2sin(cos^(-1)(...

    Text Solution

    |

  4. For the A.P given by a(1),a(2). . .a(n) . . . ., the equation satisfi...

    Text Solution

    |

  5. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  6. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  7. The value of lamda so that the matric A^(-1)-lamdaI is singular where ...

    Text Solution

    |

  8. Let F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1] and G(beta)=[...

    Text Solution

    |

  9. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  10. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  11. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  12. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |

  13. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  14. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  15. The sum of three numbers forming a geometric progression is equal to 5...

    Text Solution

    |

  16. if cos^(-1)((1)/(sqrt(2))(cos((7pi)/(5))-sin((2pi)/(5)))=(ppi)/(q) (wh...

    Text Solution

    |

  17. if a in R and equation (a-2)(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x] re...

    Text Solution

    |

  18. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  19. If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum(r=1)^(2n-1)2f((r)/(2n))...

    Text Solution

    |

  20. If f(2-x)=f(2+x) and f(7-x)=f(7+x) and f(0)=0. If the minimum number o...

    Text Solution

    |