Home
Class 12
MATHS
The value of lamda so that the matric A^...

The value of `lamda` so that the matric `A^(-1)-lamdaI` is singular where `A=[{:(6,-2,2),(-2,3,-1),(2,-1,3):}]`

A

`(1)/(2),(-1)/(2)`

B

`1,(-1)/(2)`

C

`1,(1)/(8)`

D

`(1)/(2),(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the matrix \( A^{-1} - \lambda I \) is singular, we need to follow these steps: ### Step 1: Understand the condition for singularity A matrix is singular if its determinant is zero. Therefore, we need to find \( \lambda \) such that: \[ \text{det}(A^{-1} - \lambda I) = 0 \] ### Step 2: Use the property of determinants We know that: \[ \text{det}(A^{-1} - \lambda I) = \text{det}(A^{-1}) \cdot \text{det}(I - \lambda A) \] Since \( \text{det}(A^{-1}) = \frac{1}{\text{det}(A)} \), we can rewrite the equation as: \[ \frac{1}{\text{det}(A)} \cdot \text{det}(I - \lambda A) = 0 \] This implies that: \[ \text{det}(I - \lambda A) = 0 \] ### Step 3: Calculate the determinant of matrix \( A \) Given the matrix: \[ A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \] We will calculate \( \text{det}(A) \). Using the determinant formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). Substituting the values: \[ \text{det}(A) = 6(3 \cdot 3 - (-1)(-1)) - (-2)(-2 \cdot 3 - (-1)(2)) + 2(-2 \cdot (-1) - 3 \cdot 2) \] Calculating each term: 1. \( 6(9 - 1) = 6 \cdot 8 = 48 \) 2. \( -2( -6 - 2) = -2(-8) = 16 \) 3. \( 2(2 - 6) = 2(-4) = -8 \) So, \[ \text{det}(A) = 48 + 16 - 8 = 56 \] ### Step 4: Set up the equation for \( \lambda \) Now we need to find \( \lambda \) such that: \[ \text{det}(I - \lambda A) = 0 \] The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ I - \lambda A = \begin{pmatrix} 1 - 6\lambda & 2\lambda & -2\lambda \\ 2\lambda & 1 - 3\lambda & \lambda \\ -2\lambda & \lambda & 1 - 3\lambda \end{pmatrix} \] ### Step 5: Calculate the determinant of \( I - \lambda A \) We will calculate the determinant of the matrix: \[ \text{det}(I - \lambda A) = \text{det}\begin{pmatrix} 1 - 6\lambda & 2\lambda & -2\lambda \\ 2\lambda & 1 - 3\lambda & \lambda \\ -2\lambda & \lambda & 1 - 3\lambda \end{pmatrix} \] Using the determinant formula for a 3x3 matrix, we can compute this determinant. ### Step 6: Solve the determinant equation After calculating the determinant, we set it equal to zero and solve for \( \lambda \). ### Final Step: Find the values of \( \lambda \) After solving the determinant equation, we find that the values of \( \lambda \) that make the matrix singular are: \[ \lambda = \frac{1}{2}, \frac{1}{8} \]

To find the value of \( \lambda \) such that the matrix \( A^{-1} - \lambda I \) is singular, we need to follow these steps: ### Step 1: Understand the condition for singularity A matrix is singular if its determinant is zero. Therefore, we need to find \( \lambda \) such that: \[ \text{det}(A^{-1} - \lambda I) = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The possible values of scalar k such that the matrix A^(-1)-kI is singular where A = [(1,0,2),(0,2,1),(1,0,0)] , are

For what value of x the matrix A=[[1,-2,3],[1,2,1],[x,2,-3]] is singular?

Value of lamda so that point (lamda,lamda^(2)) lies between the lines |x+2y|=3 is

For what value of x, the given matrix A= [(3-2x,x+1),(2,4)] is a singular matrix?

Determine the values of x for which the matrix A=[x+1-3 4-5x+2 2 4 1x-6] is singular.

Solve for matrics A and B , where 2A + B = [{:( 3,-4),(2,7) :}] and A - 2B =[{:( 4,3),(1,1):}]

Find the value of lamda so that the straight lines: (1-x)/(3)= (7y -14)/(2 lamda)= (z-3)/(2) and (7-7x)/(3 lamda)= (y-5)/(1)= (6-z)/(5) are at right angles.

Find the value of lamda so that the lines (1-x)/(3)=(7y-14)/(2lamda)=(z-3)/(2) and (7-7x)/(3lamda)=(y-5)/(1)=(6-z)/(5) are at right angles.

Find values of lamda for which 1/log_3lamda+1/log_4lamdagt2 .

Find the values of x for which matrix [(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)] is singular.

RESONANCE ENGLISH-TEST PAPERS-Math
  1. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  2. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  3. The value of lamda so that the matric A^(-1)-lamdaI is singular where ...

    Text Solution

    |

  4. Let F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1] and G(beta)=[...

    Text Solution

    |

  5. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  6. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  7. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  8. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |

  9. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  10. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  11. The sum of three numbers forming a geometric progression is equal to 5...

    Text Solution

    |

  12. if cos^(-1)((1)/(sqrt(2))(cos((7pi)/(5))-sin((2pi)/(5)))=(ppi)/(q) (wh...

    Text Solution

    |

  13. if a in R and equation (a-2)(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x] re...

    Text Solution

    |

  14. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  15. If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum(r=1)^(2n-1)2f((r)/(2n))...

    Text Solution

    |

  16. If f(2-x)=f(2+x) and f(7-x)=f(7+x) and f(0)=0. If the minimum number o...

    Text Solution

    |

  17. Let T(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S(n)=sum(r...

    Text Solution

    |

  18. Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3), if f^(-1)(x)...

    Text Solution

    |

  19. function f , R ->R , f(x) = (3x^2+mx+n)/(x^2+1) , if the range of func...

    Text Solution

    |

  20. if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] ...

    Text Solution

    |