Home
Class 12
MATHS
Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-...

Let `f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(sec^(-1)x)+(sec^(-1)x)/(cosec^(-1)x)+(cosec^(-1)x)/(cot^(-1)x)+(cot^(-1)x)/(sin^(-1)x)`. Then which of the following statements holds good?

A

a. Minimum value of f(x) is 6.

B

b. `f(x)` is a continous function.

C

c. `f(-1)=(-107)/(12)`

D

d. `f(x)` is non-derivable at `x=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \frac{\sin^{-1} x}{\cos^{-1} x} + \frac{\cos^{-1} x}{\tan^{-1} x} + \frac{\tan^{-1} x}{\sec^{-1} x} + \frac{\sec^{-1} x}{\csc^{-1} x} + \frac{\csc^{-1} x}{\cot^{-1} x} + \frac{\cot^{-1} x}{\sin^{-1} x} \] ### Step 1: Understand the Domains of the Inverse Functions The domains of the inverse trigonometric functions are as follows: - \(\sin^{-1} x\) is defined for \(x \in [-1, 1]\) - \(\cos^{-1} x\) is defined for \(x \in [-1, 1]\) - \(\tan^{-1} x\) is defined for all \(x \in (-\infty, \infty)\) - \(\sec^{-1} x\) is defined for \(x \in (-\infty, -1] \cup [1, \infty)\) - \(\csc^{-1} x\) is defined for \(x \in (-\infty, -1] \cup [1, \infty)\) - \(\cot^{-1} x\) is defined for all \(x \in (-\infty, \infty)\) ### Step 2: Determine the Common Domain The common domain for the function \(f(x)\) is determined by the most restrictive domains of the components: - The common domain is \(x \in [-1, 1]\) because both \(\sin^{-1} x\) and \(\cos^{-1} x\) restrict \(x\) to this interval. ### Step 3: Evaluate \(f(x)\) at the Endpoints Next, we evaluate \(f(x)\) at the endpoints of the domain, \(x = -1\) and \(x = 1\). 1. **At \(x = 1\)**: \[ f(1) = \frac{\sin^{-1}(1)}{\cos^{-1}(1)} + \frac{\cos^{-1}(1)}{\tan^{-1}(1)} + \frac{\tan^{-1}(1)}{\sec^{-1}(1)} + \frac{\sec^{-1}(1)}{\csc^{-1}(1)} + \frac{\csc^{-1}(1)}{\cot^{-1}(1)} + \frac{\cot^{-1}(1)}{\sin^{-1}(1)} \] - \(\sin^{-1}(1) = \frac{\pi}{2}\) - \(\cos^{-1}(1) = 0\) (undefined division) - Therefore, \(f(1)\) is undefined. 2. **At \(x = -1\)**: \[ f(-1) = \frac{\sin^{-1}(-1)}{\cos^{-1}(-1)} + \frac{\cos^{-1}(-1)}{\tan^{-1}(-1)} + \frac{\tan^{-1}(-1)}{\sec^{-1}(-1)} + \frac{\sec^{-1}(-1)}{\csc^{-1}(-1)} + \frac{\csc^{-1}(-1)}{\cot^{-1}(-1)} + \frac{\cot^{-1}(-1)}{\sin^{-1}(-1)} \] - \(\sin^{-1}(-1) = -\frac{\pi}{2}\) - \(\cos^{-1}(-1) = \pi\) - \(\tan^{-1}(-1) = -\frac{\pi}{4}\) - \(\sec^{-1}(-1) = \pi\) - \(\csc^{-1}(-1) = -\frac{\pi}{2}\) - \(\cot^{-1}(-1) = \frac{3\pi}{4}\) Evaluating \(f(-1)\) gives: \[ f(-1) = \frac{-\frac{\pi}{2}}{\pi} + \frac{\pi}{-\frac{\pi}{4}} + \frac{-\frac{\pi}{4}}{\pi} + \frac{\pi}{-\frac{\pi}{2}} + \frac{-\frac{\pi}{2}}{\frac{3\pi}{4}} + \frac{\frac{3\pi}{4}}{-\frac{\pi}{2}} \] Simplifying each term: - First term: \(-\frac{1}{2}\) - Second term: \(-4\) - Third term: \(-\frac{1}{4}\) - Fourth term: \(-2\) - Fifth term: \(-\frac{3}{2}\) - Sixth term: \(-\frac{3}{2}\) Adding these values gives: \[ f(-1) = -\frac{1}{2} - 4 - \frac{1}{4} - 2 - \frac{3}{2} - \frac{3}{2} = -\frac{1}{2} - 4 - \frac{1}{4} - 2 - 3 = -\frac{39}{4} \] ### Step 4: Conclusion Since \(f(1)\) is undefined and \(f(-1)\) is a finite value, we can conclude that \(f(x)\) is not continuous over the interval \([-1, 1]\) and is non-derivable at \(x = 1\). ### Final Answer The correct statement is that \(f(x)\) is non-derivable at \(x = 1\) and the minimum value of \(f(x)\) is not defined.

To solve the problem, we need to analyze the function given: \[ f(x) = \frac{\sin^{-1} x}{\cos^{-1} x} + \frac{\cos^{-1} x}{\tan^{-1} x} + \frac{\tan^{-1} x}{\sec^{-1} x} + \frac{\sec^{-1} x}{\csc^{-1} x} + \frac{\csc^{-1} x}{\cot^{-1} x} + \frac{\cot^{-1} x}{\sin^{-1} x} \] ### Step 1: Understand the Domains of the Inverse Functions The domains of the inverse trigonometric functions are as follows: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

Solve sec^(-1) x gt cosec^(-1) x

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x)) , then f(x) takes

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

tan^(-1) ((1-cos x)/(sin x))

RESONANCE ENGLISH-TEST PAPERS-Math
  1. The value of lamda so that the matric A^(-1)-lamdaI is singular where ...

    Text Solution

    |

  2. Let F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1] and G(beta)=[...

    Text Solution

    |

  3. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  4. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  5. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  6. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |

  7. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  8. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  9. The sum of three numbers forming a geometric progression is equal to 5...

    Text Solution

    |

  10. if cos^(-1)((1)/(sqrt(2))(cos((7pi)/(5))-sin((2pi)/(5)))=(ppi)/(q) (wh...

    Text Solution

    |

  11. if a in R and equation (a-2)(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x] re...

    Text Solution

    |

  12. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  13. If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum(r=1)^(2n-1)2f((r)/(2n))...

    Text Solution

    |

  14. If f(2-x)=f(2+x) and f(7-x)=f(7+x) and f(0)=0. If the minimum number o...

    Text Solution

    |

  15. Let T(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S(n)=sum(r...

    Text Solution

    |

  16. Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3), if f^(-1)(x)...

    Text Solution

    |

  17. function f , R ->R , f(x) = (3x^2+mx+n)/(x^2+1) , if the range of func...

    Text Solution

    |

  18. if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] ...

    Text Solution

    |

  19. The number of real solutions of equation x^(log(x)2)+x^(2)=3x is

    Text Solution

    |

  20. if the system of following equations in x and y 2x+3y+4=0,3x+5y+6=0 ...

    Text Solution

    |