Home
Class 12
MATHS
Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2...

Let `f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3)`. If g(x) is inverse of `f(x)` then the value of `(1)/(g^(')(-(7)/(6)))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{g'(-\frac{7}{6})} \) where \( g(x) \) is the inverse of the function \( f(x) = -4\sqrt{e^{1-x}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3} \). ### Step 1: Find \( f(1) \) We first compute \( f(1) \): \[ f(1) = -4\sqrt{e^{1-1}} + 1 + 1 + \frac{1^2}{2} + \frac{1^3}{3} \] Calculating each term: \[ f(1) = -4\sqrt{e^0} + 1 + 1 + \frac{1}{2} + \frac{1}{3} \] \[ = -4(1) + 1 + 1 + \frac{1}{2} + \frac{1}{3} \] \[ = -4 + 2 + \frac{1}{2} + \frac{1}{3} \] Finding a common denominator (which is 6): \[ = -4 + 2 + \frac{3}{6} + \frac{2}{6} = -4 + 2 + \frac{5}{6} \] \[ = -2 + \frac{5}{6} = -\frac{12}{6} + \frac{5}{6} = -\frac{7}{6} \] Thus, we have: \[ f(1) = -\frac{7}{6} \] ### Step 2: Use the Inverse Function Theorem From the inverse function theorem, we know that: \[ g'(f(x)) \cdot f'(x) = 1 \] Thus, we can express \( g'(-\frac{7}{6}) \) in terms of \( f'(1) \): \[ g'(-\frac{7}{6}) = \frac{1}{f'(1)} \] ### Step 3: Differentiate \( f(x) \) Now we need to find \( f'(x) \): \[ f'(x) = \frac{d}{dx}\left(-4\sqrt{e^{1-x}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3}\right) \] Using the chain rule for the first term: \[ f'(x) = -4 \cdot \frac{1}{2\sqrt{e^{1-x}}} \cdot (-e^{1-x}) + 1 + x + x^2 \] \[ = \frac{4e^{1-x}}{2\sqrt{e^{1-x}}} + 1 + x + x^2 \] \[ = \frac{2e^{1-x}}{\sqrt{e^{1-x}}} + 1 + x + x^2 \] \[ = 2\sqrt{e^{1-x}} + 1 + x + x^2 \] ### Step 4: Evaluate \( f'(1) \) Now we evaluate \( f'(1) \): \[ f'(1) = 2\sqrt{e^{1-1}} + 1 + 1 + 1^2 \] \[ = 2\sqrt{e^0} + 1 + 1 + 1 = 2(1) + 1 + 1 + 1 = 5 \] ### Step 5: Find \( g'(-\frac{7}{6}) \) Now substituting back into our equation for \( g'(-\frac{7}{6}) \): \[ g'(-\frac{7}{6}) = \frac{1}{f'(1)} = \frac{1}{5} \] ### Step 6: Find \( \frac{1}{g'(-\frac{7}{6})} \) Finally, we find: \[ \frac{1}{g'(-\frac{7}{6})} = 5 \] Thus, the final answer is: \[ \boxed{5} \]

To solve the problem, we need to find the value of \( \frac{1}{g'(-\frac{7}{6})} \) where \( g(x) \) is the inverse of the function \( f(x) = -4\sqrt{e^{1-x}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3} \). ### Step 1: Find \( f(1) \) We first compute \( f(1) \): \[ f(1) = -4\sqrt{e^{1-1}} + 1 + 1 + \frac{1^2}{2} + \frac{1^3}{3} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

Let f(x)=x^(105)+x^(53)+x^(27)+x^(13)+x^3+3x+1. If g(x) is inverse of function f(x), then the value of g^(prime)(1) is (a)3 (b) 1/3 (c) -1/3 (d) not defined

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)(x), then the reciprocal of g^(prime)((-7)/6) is_________

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

RESONANCE ENGLISH-TEST PAPERS-Math
  1. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  2. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  3. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  4. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |

  5. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  6. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  7. The sum of three numbers forming a geometric progression is equal to 5...

    Text Solution

    |

  8. if cos^(-1)((1)/(sqrt(2))(cos((7pi)/(5))-sin((2pi)/(5)))=(ppi)/(q) (wh...

    Text Solution

    |

  9. if a in R and equation (a-2)(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x] re...

    Text Solution

    |

  10. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  11. If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum(r=1)^(2n-1)2f((r)/(2n))...

    Text Solution

    |

  12. If f(2-x)=f(2+x) and f(7-x)=f(7+x) and f(0)=0. If the minimum number o...

    Text Solution

    |

  13. Let T(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S(n)=sum(r...

    Text Solution

    |

  14. Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3), if f^(-1)(x)...

    Text Solution

    |

  15. function f , R ->R , f(x) = (3x^2+mx+n)/(x^2+1) , if the range of func...

    Text Solution

    |

  16. if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] ...

    Text Solution

    |

  17. The number of real solutions of equation x^(log(x)2)+x^(2)=3x is

    Text Solution

    |

  18. if the system of following equations in x and y 2x+3y+4=0,3x+5y+6=0 ...

    Text Solution

    |

  19. Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}]. Find the sum of all the value of...

    Text Solution

    |

  20. Let g(x)=(f(x))^(2)+f(x)+19 where f(x)=|x-2|^(2)+|x-2|-2 then number o...

    Text Solution

    |