Home
Class 12
MATHS
If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(...

If `f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum_(r=1)^(2n-1)2f((r)/(2n))`. Find te value `g(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( g(n) \) defined as: \[ g(n) = \sum_{r=1}^{2n-1} 2f\left(\frac{r}{2n}\right) \] where \[ f(x) = \frac{a^x}{a^x + \sqrt{a}} \quad (a > 0) \] We are specifically asked to find \( g(4) \). ### Step 1: Calculate \( g(4) \) Substituting \( n = 4 \) into the equation for \( g(n) \): \[ g(4) = \sum_{r=1}^{2(4)-1} 2f\left(\frac{r}{8}\right) = \sum_{r=1}^{7} 2f\left(\frac{r}{8}\right) \] ### Step 2: Evaluate \( f\left(\frac{r}{8}\right) \) Now we need to evaluate \( f\left(\frac{r}{8}\right) \): \[ f\left(\frac{r}{8}\right) = \frac{a^{\frac{r}{8}}}{a^{\frac{r}{8}} + \sqrt{a}} \] ### Step 3: Simplify \( f\left(\frac{r}{8}\right) \) We can express \( \sqrt{a} \) as \( a^{\frac{1}{2}} \): \[ f\left(\frac{r}{8}\right) = \frac{a^{\frac{r}{8}}}{a^{\frac{r}{8}} + a^{\frac{1}{2}}} \] ### Step 4: Rewrite the sum Now substituting \( f\left(\frac{r}{8}\right) \) back into the sum: \[ g(4) = \sum_{r=1}^{7} 2 \cdot \frac{a^{\frac{r}{8}}}{a^{\frac{r}{8}} + a^{\frac{1}{2}}} \] ### Step 5: Factor out common terms Factor out \( a^{\frac{1}{2}} \) from the denominator: \[ g(4) = \sum_{r=1}^{7} 2 \cdot \frac{a^{\frac{r}{8}}}{a^{\frac{1}{2}}(a^{\frac{r}{8 - \frac{1}{2}} + 1)}} \] This simplifies to: \[ g(4) = \frac{2}{\sqrt{a}} \sum_{r=1}^{7} \frac{a^{\frac{r}{8}}}{a^{\frac{r}{8}} + 1} \] ### Step 6: Evaluate the sum Now, we can evaluate the sum \( \sum_{r=1}^{7} \frac{a^{\frac{r}{8}}}{a^{\frac{r}{8}} + 1} \). Notice that: \[ \frac{a^{\frac{r}{8}}}{a^{\frac{r}{8}} + 1} + \frac{1}{a^{\frac{r}{8}} + 1} = 1 \] Thus, we can pair terms in the sum: \[ g(4) = \frac{2}{\sqrt{a}} \cdot 7 \cdot \frac{1}{2} = \frac{7}{\sqrt{a}} \] ### Final Step: Conclusion Thus, the final result for \( g(4) \) is: \[ g(4) = \frac{7}{\sqrt{a}} \]

To solve the problem, we need to evaluate the function \( g(n) \) defined as: \[ g(n) = \sum_{r=1}^{2n-1} 2f\left(\frac{r}{2n}\right) \] where ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If f(x+y)=f(x).f(y) and f(1)=4 .Find sum_(r=1)^n f(r)

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

RESONANCE ENGLISH-TEST PAPERS-Math
  1. if a in R and equation (a-2)(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x] re...

    Text Solution

    |

  2. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  3. If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum(r=1)^(2n-1)2f((r)/(2n))...

    Text Solution

    |

  4. If f(2-x)=f(2+x) and f(7-x)=f(7+x) and f(0)=0. If the minimum number o...

    Text Solution

    |

  5. Let T(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S(n)=sum(r...

    Text Solution

    |

  6. Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3), if f^(-1)(x)...

    Text Solution

    |

  7. function f , R ->R , f(x) = (3x^2+mx+n)/(x^2+1) , if the range of func...

    Text Solution

    |

  8. if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] ...

    Text Solution

    |

  9. The number of real solutions of equation x^(log(x)2)+x^(2)=3x is

    Text Solution

    |

  10. if the system of following equations in x and y 2x+3y+4=0,3x+5y+6=0 ...

    Text Solution

    |

  11. Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}]. Find the sum of all the value of...

    Text Solution

    |

  12. Let g(x)=(f(x))^(2)+f(x)+19 where f(x)=|x-2|^(2)+|x-2|-2 then number o...

    Text Solution

    |

  13. if x^(4)+3cos(ax^(2)+bx+c)=2(x^(2)-2) has two solution with a,b,c in (...

    Text Solution

    |

  14. Consider the function f(x)=lim(nto infty) ((1+cosx)^(n)+5lnx)/(2+(1+co...

    Text Solution

    |

  15. A square matrix B is said to be an orthogonal matrix of order n if BB^...

    Text Solution

    |

  16. Let a,b,c be different nonzero real numbers and x,y,z be three numbers...

    Text Solution

    |

  17. Let f(x) = x^(3)- x^(2)+x+1and g(x) ={{:(max.f(t) , 0le tle x, " ...

    Text Solution

    |

  18. if p^(2)+2q^(2)+5r^(2)+2pq-4qr+6p+6q-2r+10le0 for p,q,r in R then iden...

    Text Solution

    |

  19. Let (log(x)(2a-x))/(log(x)2)+(log(a)(x))/(log(a)2)=(1)/(log(a^(2)-1)2)...

    Text Solution

    |

  20. if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

    Text Solution

    |