Home
Class 12
MATHS
Consider the function f(x)=lim(nto infty...

Consider the function `f(x)=lim_(nto infty) ((1+cosx)^(n)+5lnx)/(2+(1+cosx)^(n))`, then

A

a. `f(x)` is discontinous at positive even multiples of `pi`

B

b. `f(x)` is continuous at positive odd multiples of `pi`

C

c. `f(x)` is discontinuous at positive odd multiples of `(pi)/(2)`

D

d. `f(x)` is continuous at positive even multiples of `(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function: \[ f(x) = \lim_{n \to \infty} \frac{(1 + \cos x)^n + 5 \ln x}{2 + (1 + \cos x)^n} \] ### Step 1: Analyze the term \((1 + \cos x)^n\) As \(n\) approaches infinity, the behavior of \((1 + \cos x)^n\) will depend on the value of \(1 + \cos x\): - If \(1 + \cos x > 1\), then \((1 + \cos x)^n \to \infty\). - If \(1 + \cos x = 1\) (which occurs when \(\cos x = 0\), i.e., \(x = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\)), then \((1 + \cos x)^n = 1\). - If \(1 + \cos x < 1\) (which occurs when \(\cos x < -1\), but this is not possible since \(\cos x\) ranges from -1 to 1), this case does not apply. ### Step 2: Evaluate the limit We will consider two cases based on the value of \(x\): **Case 1: \(1 + \cos x > 1\) (i.e., \(x \neq \frac{\pi}{2} + k\pi\))** In this case, as \(n \to \infty\): \[ f(x) = \lim_{n \to \infty} \frac{(1 + \cos x)^n + 5 \ln x}{2 + (1 + \cos x)^n} \] Both the numerator and denominator will be dominated by \((1 + \cos x)^n\): \[ f(x) = \lim_{n \to \infty} \frac{(1 + \cos x)^n}{(1 + \cos x)^n} = 1 \] **Case 2: \(1 + \cos x = 1\) (i.e., \(x = \frac{\pi}{2} + k\pi\))** In this case: \[ f(x) = \lim_{n \to \infty} \frac{1 + 5 \ln x}{2 + 1} = \frac{1 + 5 \ln x}{3} \] ### Final Result Thus, we can summarize the function \(f(x)\) as follows: - For \(x \neq \frac{\pi}{2} + k\pi\), \(f(x) = 1\). - For \(x = \frac{\pi}{2} + k\pi\), \(f(x) = \frac{1 + 5 \ln x}{3}\).

To solve the problem, we need to analyze the given function: \[ f(x) = \lim_{n \to \infty} \frac{(1 + \cos x)^n + 5 \ln x}{2 + (1 + \cos x)^n} \] ### Step 1: Analyze the term \((1 + \cos x)^n\) As \(n\) approaches infinity, the behavior of \((1 + \cos x)^n\) will depend on the value of \(1 + \cos x\): - If \(1 + \cos x > 1\), then \((1 + \cos x)^n \to \infty\). - If \(1 + \cos x = 1\) (which occurs when \(\cos x = 0\), i.e., \(x = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\)), then \((1 + \cos x)^n = 1\). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

lim_( xrarr0) (1-cosx)/(x^(2))

The peroid of the function f(x) =(|sinx|-|cosx|)/(|sin x + cosx|) is

Integrate the functions (cosx)/(1+cosx)

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

int nx^(n-1) cosx^n dx

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

If the function f(x)=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx)) If the value of f(pi/3)=a+bsqrt(c) then a+b+c=

Discuss continuity of function f(x)=1+ lim_(n to oo) cos^(2n) x. Draw the graph of the function and find the period of the function .

The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

RESONANCE ENGLISH-TEST PAPERS-Math
  1. Let g(x)=(f(x))^(2)+f(x)+19 where f(x)=|x-2|^(2)+|x-2|-2 then number o...

    Text Solution

    |

  2. if x^(4)+3cos(ax^(2)+bx+c)=2(x^(2)-2) has two solution with a,b,c in (...

    Text Solution

    |

  3. Consider the function f(x)=lim(nto infty) ((1+cosx)^(n)+5lnx)/(2+(1+co...

    Text Solution

    |

  4. A square matrix B is said to be an orthogonal matrix of order n if BB^...

    Text Solution

    |

  5. Let a,b,c be different nonzero real numbers and x,y,z be three numbers...

    Text Solution

    |

  6. Let f(x) = x^(3)- x^(2)+x+1and g(x) ={{:(max.f(t) , 0le tle x, " ...

    Text Solution

    |

  7. if p^(2)+2q^(2)+5r^(2)+2pq-4qr+6p+6q-2r+10le0 for p,q,r in R then iden...

    Text Solution

    |

  8. Let (log(x)(2a-x))/(log(x)2)+(log(a)(x))/(log(a)2)=(1)/(log(a^(2)-1)2)...

    Text Solution

    |

  9. if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

    Text Solution

    |

  10. If number of integral values of x satisfying the inequality ((x)/(100)...

    Text Solution

    |

  11. if alpha+(1)/(alpha) and 2-beta-(1)/(beta)(alpha,betage0) are the root...

    Text Solution

    |

  12. in the given figure y=x^(2)+bx+c is a quadratic polynomial which meets...

    Text Solution

    |

  13. in the given figure y=x^(2)+bx+c is a quadratic polynomial which meets...

    Text Solution

    |

  14. All possible roots of polynomial with integral coefficients can be ide...

    Text Solution

    |

  15. All possible roots of polynomial with integral coefficients can be ide...

    Text Solution

    |

  16. Suppose a series of n terms given by S(n)=t(1)+t(2)+t(3)+. . . .+t(n) ...

    Text Solution

    |

  17. Suppose a series of n terms given by S(n)=t(1)+t(2)+t(3)+. . ..+t(n) ...

    Text Solution

    |

  18. A homogeneous polynomial of the second degree in n variables i.e., the...

    Text Solution

    |

  19. A homogeneous polynomial of the second degree in n variables i.e., the...

    Text Solution

    |

  20. Consider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such ...

    Text Solution

    |