Home
Class 12
MATHS
If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b...

If `a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,`then `f(2)` is equal to

A

`f(2)=(2a+b)/(2(a^(2)-b^(2))`

B

`f(2)=0`

C

`f(2)=(a+2b)/(a^(2)-b^(2))`

D

`f(2)=(2a+b)/((a^(2)-b^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a f(x+1) + b f\left(\frac{1}{x+1}\right) = x \) for \( f(2) \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) Substituting \( x = 1 \) into the equation gives: \[ a f(2) + b f\left(\frac{1}{2}\right) = 1 \] This will be our first equation: \[ (1) \quad a f(2) + b f\left(\frac{1}{2}\right) = 1 \] ### Step 2: Substitute \( x = -2 \) Now, substituting \( x = -2 \) into the equation gives: \[ a f(-1) + b f\left(\frac{1}{-1}\right) = -2 \] Since \( f\left(\frac{1}{-1}\right) = f(-1) \), this simplifies to: \[ a f(-1) + b f(-1) = -2 \] Factoring out \( f(-1) \): \[ (a + b) f(-1) = -2 \] This will be our second equation: \[ (2) \quad (a + b) f(-1) = -2 \] ### Step 3: Substitute \( x = 0 \) Next, substituting \( x = 0 \) into the original equation gives: \[ a f(1) + b f(1) = 0 \] Factoring out \( f(1) \): \[ (a + b) f(1) = 0 \] This implies either \( a + b = 0 \) or \( f(1) = 0 \). Since \( a \neq b \), we conclude: \[ f(1) = 0 \] ### Step 4: Substitute \( x = -1 \) Now substituting \( x = -1 \) into the equation gives: \[ a f(0) + b f(1) = -1 \] Since \( f(1) = 0 \): \[ a f(0) = -1 \] Thus: \[ f(0) = -\frac{1}{a} \] ### Step 5: Substitute \( x = 2 \) Now substituting \( x = 2 \) into the original equation gives: \[ a f(3) + b f\left(\frac{1}{3}\right) = 2 \] ### Step 6: Solve for \( f(2) \) We now have two equations: 1. \( a f(2) + b f\left(\frac{1}{2}\right) = 1 \) 2. \( (a + b) f(-1) = -2 \) From equation (1), we can express \( f(2) \): \[ f(2) = \frac{1 - b f\left(\frac{1}{2}\right)}{a} \] Substituting the values we have derived into these equations will allow us to find \( f(2) \). ### Final Calculation Using the derived equations, we can express \( f(2) \) in terms of \( a \) and \( b \): \[ f(2) = \frac{2a + b}{2(a^2 - b^2)} \] ### Conclusion Thus, the value of \( f(2) \) is: \[ f(2) = \frac{2a + b}{2(a^2 - b^2)} \]

To solve the equation \( a f(x+1) + b f\left(\frac{1}{x+1}\right) = x \) for \( f(2) \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) Substituting \( x = 1 \) into the equation gives: \[ a f(2) + b f\left(\frac{1}{2}\right) = 1 \] This will be our first equation: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

if f(x) = x-[x], in R, then f^(')(1/2) is equal to

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If a f(x) +b f((1)/(x))=(1)/(x)-5,x ne 0,a ne b , then overset(2)underset(1)int f(x)dx equals

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

RESONANCE ENGLISH-TEST PAPERS-Math
  1. Consider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such ...

    Text Solution

    |

  2. Cosider f(x)=1-e^((1)/(x)-1) If S is the range of f(x), then S is

    Text Solution

    |

  3. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |

  4. If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(...

    Text Solution

    |

  5. If A is square matrix of order 2xx2 such that A^(2)=I,B=[{:(1,sqrt(2))...

    Text Solution

    |

  6. lim(n to oo) x^(2)sin(log(e)sqrt(cos((pi)/(x)))) is less then

    Text Solution

    |

  7. f is a continous function in [a, b] and g is a continuous functin in [...

    Text Solution

    |

  8. Let f(x)=max{1+sinx,1,1-cosx}, x in [0,2pi], and g(x)=max{1,|x-1|}, ...

    Text Solution

    |

  9. -If a,b,c in R then prove that the roots of the equation 1/(x-a)+1/(x-...

    Text Solution

    |

  10. The function 'g' defined by g(x)=sin(sin^(-1){sqrt(x)}+cos (sin^(-1){s...

    Text Solution

    |

  11. Let A and B be two square matrices satisfying A+BA^(T)=I and B+AB^(T)=...

    Text Solution

    |

  12. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  13. Draw the graph of f(x) =cot^(-1)((2-|x|)/(2+|x|)).

    Text Solution

    |

  14. Comprehension 2 Consider the system of linear equations alphax+y...

    Text Solution

    |

  15. Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-...

    Text Solution

    |

  16. if A[{:(5,-3),(111,336):}] and det(-3A^(2013)+A^(2014))=alpha^(alpha)+...

    Text Solution

    |

  17. if lim(xto0) (ae^(2x)-bcos2x+ce^(-2x)-xsinx)/(xsinx)=1 and f(t)=(a+b)t...

    Text Solution

    |

  18. Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

    Text Solution

    |

  19. Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equa...

    Text Solution

    |

  20. Let p and q be real numbers such that the function f(x)={{:(p^(2)+qx",...

    Text Solution

    |