Home
Class 12
MATHS
If A is square matrix of order 2xx2 such...

If `A` is square matrix of order `2xx2` such that `A^(2)=I,B=[{:(1,sqrt(2)),(0,1):}]` and `C=ABA` then

A

`C^(2009)=A[{:(1,2009sqrt(2)),(0,1):}]`

B

`C^(2009)=A[{:(1,2009+sqrt(2)),(0,1):}]`

C

`|C|^(2009)=1`

D

`C^(2009)=A[{:(1,2009sqrt(2)),(0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrices and perform the necessary calculations step by step. ### Given: 1. \( A \) is a square matrix of order \( 2 \times 2 \) such that \( A^2 = I \) (where \( I \) is the identity matrix). 2. \( B = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix} \) 3. \( C = ABA \) ### Step 1: Understanding the properties of matrix \( A \) Since \( A^2 = I \), this implies that \( A \) is an involutory matrix. This means that \( A \) is its own inverse, i.e., \( A^{-1} = A \). ### Step 2: Calculate \( C = ABA \) We need to find \( C \) by performing the multiplication \( ABA \). 1. **First, calculate \( BA \)**: - Let \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). - Then, \[ BA = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 \cdot a + \sqrt{2} \cdot c & 1 \cdot b + \sqrt{2} \cdot d \\ 0 \cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d \end{pmatrix} = \begin{pmatrix} a + \sqrt{2}c & b + \sqrt{2}d \\ c & d \end{pmatrix} \] 2. **Now calculate \( C = A(BA) \)**: - We have \( BA = \begin{pmatrix} a + \sqrt{2}c & b + \sqrt{2}d \\ c & d \end{pmatrix} \). - Now, multiply \( A \) with \( BA \): \[ C = A \begin{pmatrix} a + \sqrt{2}c & b + \sqrt{2}d \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a + \sqrt{2}c & b + \sqrt{2}d \\ c & d \end{pmatrix} \] - Performing this multiplication gives: \[ C = \begin{pmatrix} a(a + \sqrt{2}c) + b(c) & a(b + \sqrt{2}d) + b(d) \\ c(a + \sqrt{2}c) + d(c) & c(b + \sqrt{2}d) + d(d) \end{pmatrix} \] ### Step 3: Find the modulus of \( C \) To find the modulus (determinant) of \( C \), we can use the property that if \( A^2 = I \), then \( \text{det}(A) = \pm 1 \). 1. **Calculate \( \text{det}(C) \)**: - Since \( C = ABA \) and using the property of determinants: \[ \text{det}(C) = \text{det}(A) \cdot \text{det}(B) \cdot \text{det}(A) = (\text{det}(A))^2 \cdot \text{det}(B) \] - Given \( \text{det}(A) = \pm 1 \) and \( \text{det}(B) = 1 \) (since \( B \) is an upper triangular matrix with diagonal entries 1), we have: \[ \text{det}(C) = 1 \cdot 1 = 1 \] ### Step 4: Calculate \( C^{2009} \) Since the determinant of \( C \) is 1, we can conclude that: \[ C^{2009} = C \] This means that the modulus of \( C^{2009} \) is also 1. ### Conclusion Based on the calculations, we can conclude: - \( C^{2009} = A \cdot B^{2009} \cdot A \) - The modulus of \( C^{2009} \) is 1. ### Final Answer The correct options are: - Option 3: \( |C|^{2009} = 1 \) - Option 4: \( C^{2009} = A \cdot B^{2009} \)

To solve the problem, we need to analyze the given matrices and perform the necessary calculations step by step. ### Given: 1. \( A \) is a square matrix of order \( 2 \times 2 \) such that \( A^2 = I \) (where \( I \) is the identity matrix). 2. \( B = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix} \) 3. \( C = ABA \) ### Step 1: Understanding the properties of matrix \( A \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let a be a matrix of order 2xx2 such that A^(2)=O . (I+A)^(100) =

Find a matrix B of order 2xx2 such that : [{:(1,1),(-2,3):}]B=[{:(3,4),(-1,2):}]

If A is a square matrix of order 3 such that |A|=2 , then |(adjA^(-1))^(-1)| is

If A is a square matrix of order 3 such that abs(A)=2, then abs((adjA^(-1))^(-1)) is

If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-2,0),(0,0,-2)] , then |adj A| is equal to

If A is a non-singular matrix of order nxxn such that 3ABA^(-1)+A=2A^(-1)BA , then

If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)] , such that AB=BA , then A can be

If A is a square matrix of order 3 such that det(A)=(1)/(sqrt(3)) then det(Adj(-2A^(-2))) is equal to

If I is the unit matrix of order 2 xx 2 find the matrix M, such that (i) M-2I=3 [{:(,-1,0),(,4,1):}] (ii) 5M+3I=4[{:(,2,-5),(,0,-3):}]

If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 and B= adj. (A), then adj. (B^(2)A^(-1) B^(-1) A) is

RESONANCE ENGLISH-TEST PAPERS-Math
  1. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |

  2. If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(...

    Text Solution

    |

  3. If A is square matrix of order 2xx2 such that A^(2)=I,B=[{:(1,sqrt(2))...

    Text Solution

    |

  4. lim(n to oo) x^(2)sin(log(e)sqrt(cos((pi)/(x)))) is less then

    Text Solution

    |

  5. f is a continous function in [a, b] and g is a continuous functin in [...

    Text Solution

    |

  6. Let f(x)=max{1+sinx,1,1-cosx}, x in [0,2pi], and g(x)=max{1,|x-1|}, ...

    Text Solution

    |

  7. -If a,b,c in R then prove that the roots of the equation 1/(x-a)+1/(x-...

    Text Solution

    |

  8. The function 'g' defined by g(x)=sin(sin^(-1){sqrt(x)}+cos (sin^(-1){s...

    Text Solution

    |

  9. Let A and B be two square matrices satisfying A+BA^(T)=I and B+AB^(T)=...

    Text Solution

    |

  10. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  11. Draw the graph of f(x) =cot^(-1)((2-|x|)/(2+|x|)).

    Text Solution

    |

  12. Comprehension 2 Consider the system of linear equations alphax+y...

    Text Solution

    |

  13. Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-...

    Text Solution

    |

  14. if A[{:(5,-3),(111,336):}] and det(-3A^(2013)+A^(2014))=alpha^(alpha)+...

    Text Solution

    |

  15. if lim(xto0) (ae^(2x)-bcos2x+ce^(-2x)-xsinx)/(xsinx)=1 and f(t)=(a+b)t...

    Text Solution

    |

  16. Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

    Text Solution

    |

  17. Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equa...

    Text Solution

    |

  18. Let p and q be real numbers such that the function f(x)={{:(p^(2)+qx",...

    Text Solution

    |

  19. Consider a matrix A=[a(ij)](3xx3), where a(ij)={{:(i+j","if","ij=even)...

    Text Solution

    |

  20. if f(x)=(x^(3)-3x^(2)+3x-x^(2)l n(e^((1)/(x^(2)))(x^(2)-x+2)))/(l n(x^...

    Text Solution

    |