Home
Class 12
MATHS
if A[{:(5,-3),(111,336):}] and det(-3A^(...

if `A[{:(5,-3),(111,336):}]` and det`(-3A^(2013)+A^(2014))=alpha^(alpha)+beta^(2)(1+gamma+gamma^(2))` where `alpha,beta,gamma` are natural numbers and `(alphagtgammagtbeta)` then

A

`alpha+beta=2016`

B

`alpha+beta=2023`

C

`alpha+beta+gamma=2026`

D

`beta+gamma=13`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we need to find the determinant of the expression \(-3A^{2013} + A^{2014}\) and relate it to the expression given in terms of \(\alpha\), \(\beta\), and \(\gamma\). ### Step 1: Define the matrix \(A\) Given: \[ A = \begin{pmatrix} 5 & -3 \\ 111 & 336 \end{pmatrix} \] ### Step 2: Calculate \(A - 3I\) The identity matrix \(I\) for a \(2 \times 2\) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \(3I\) is: \[ 3I = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Now, we calculate \(A - 3I\): \[ A - 3I = \begin{pmatrix} 5 & -3 \\ 111 & 336 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 5 - 3 & -3 \\ 111 & 336 - 3 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ 111 & 333 \end{pmatrix} \] ### Step 3: Calculate \(\det(A - 3I)\) The determinant of a \(2 \times 2\) matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is calculated as: \[ \det(A) = ad - bc \] For our matrix: \[ \det(A - 3I) = (2)(333) - (-3)(111) = 666 + 333 = 999 \] ### Step 4: Calculate \(\det(A)\) Now, we calculate the determinant of \(A\): \[ \det(A) = (5)(336) - (-3)(111) = 1680 + 333 = 2013 \] ### Step 5: Calculate \(\det(-3A^{2013} + A^{2014})\) Using the properties of determinants: \[ \det(-3A^{2013} + A^{2014}) = \det(A^{2013}(-3I + A)) = \det(A^{2013}) \cdot \det(-3I + A) \] We know: \[ \det(A^{2013}) = (\det(A))^{2013} = (2013)^{2013} \] Next, we calculate \(\det(-3I + A)\): \[ -3I + A = \begin{pmatrix} 5 - 3 & -3 \\ 111 & 336 - 3 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ 111 & 333 \end{pmatrix} \] Thus: \[ \det(-3I + A) = 999 \] ### Step 6: Combine results Putting it all together: \[ \det(-3A^{2013} + A^{2014}) = (2013)^{2013} \cdot 999 \] ### Step 7: Express \(999\) in terms of \(\alpha\), \(\beta\), and \(\gamma\) We need to express \(999\) in the form given in the problem: \[ 999 = 9 \times 111 = 3^2 \times (1 + 10 + 10^2) \] This gives us: \[ \alpha = 2013, \quad \beta = 3, \quad \gamma = 10 \] ### Step 8: Verify conditions We have: \[ \alpha > \gamma > \beta \quad \text{(i.e., } 2013 > 10 > 3\text{)} \] ### Final Result Thus, the values of \(\alpha\), \(\beta\), and \(\gamma\) are: \[ \alpha = 2013, \quad \beta = 3, \quad \gamma = 10 \]

To solve the given problem step by step, we need to find the determinant of the expression \(-3A^{2013} + A^{2014}\) and relate it to the expression given in terms of \(\alpha\), \(\beta\), and \(\gamma\). ### Step 1: Define the matrix \(A\) Given: \[ A = \begin{pmatrix} 5 & -3 \\ 111 & 336 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If alpha + beta + gamma = π/2 and cot alpha, cot beta, cot gamma are in Ap. Then cot alpha. Cot gamma

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

If 2x^(3) + 3x^(2) + 5x +6=0 has roots alpha, beta, gamma then find alpha + beta + gamma, alphabeta + betagamma + gammaalpha and alpha beta gamma

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

RESONANCE ENGLISH-TEST PAPERS-Math
  1. Comprehension 2 Consider the system of linear equations alphax+y...

    Text Solution

    |

  2. Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-...

    Text Solution

    |

  3. if A[{:(5,-3),(111,336):}] and det(-3A^(2013)+A^(2014))=alpha^(alpha)+...

    Text Solution

    |

  4. if lim(xto0) (ae^(2x)-bcos2x+ce^(-2x)-xsinx)/(xsinx)=1 and f(t)=(a+b)t...

    Text Solution

    |

  5. Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

    Text Solution

    |

  6. Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equa...

    Text Solution

    |

  7. Let p and q be real numbers such that the function f(x)={{:(p^(2)+qx",...

    Text Solution

    |

  8. Consider a matrix A=[a(ij)](3xx3), where a(ij)={{:(i+j","if","ij=even)...

    Text Solution

    |

  9. if f(x)=(x^(3)-3x^(2)+3x-x^(2)l n(e^((1)/(x^(2)))(x^(2)-x+2)))/(l n(x^...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that det(A)=(1)/(sqrt(3)) then...

    Text Solution

    |

  11. let A ={{:({:(a(11),a(12)),(a(21),a(22)):}):a(ij){0,1,2} and a(11)=a(2...

    Text Solution

    |

  12. Negation of the statement pto(q^^r) is

    Text Solution

    |

  13. Mean of 5 observation is 7. if four of these observation are 6,7,8,10 ...

    Text Solution

    |

  14. Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,...

    Text Solution

    |

  15. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  16. let f(x)=x^(3)l n(x^(2)(g(x)), where g(x) is a differentiable positive...

    Text Solution

    |

  17. Let A =((1,2),(3,4))and B= ((a,0),(0,b)), a, bin N. Then,

    Text Solution

    |

  18. If f:RtoR is a function which satisfies the condition f(x)+f(y)=f((x+y...

    Text Solution

    |

  19. If A={x:x in N and xlt6(1)/(4)} and B={x: x in N and x^(2)le5) the num...

    Text Solution

    |

  20. if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim(x to 0) f(f(x)) is equal t...

    Text Solution

    |