Home
Class 12
MATHS
Range of the function f(x)=cos^(-1)x+2...

Range of the function
`f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x` is equal to

A

`[pi,2pi]`

B

`{pi,2pi}`

C

`{2pi,3pi}`

D

`[2pi,3pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos^{-1} x + 2 \cot^{-1} x + 3 \csc^{-1} x \), we will follow these steps: ### Step 1: Determine the domains of the individual functions 1. **Domain of \( \cos^{-1} x \)**: The domain is \( x \in [-1, 1] \). 2. **Domain of \( \cot^{-1} x \)**: The domain is \( x \in \mathbb{R} \) (all real numbers). 3. **Domain of \( \csc^{-1} x \)**: The domain is \( x \in (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the overall domain of \( f(x) \) To find the overall domain of \( f(x) \), we need to take the intersection of the domains of the individual functions: - The intersection of \( [-1, 1] \) (from \( \cos^{-1} x \)) and \( (-\infty, -1] \cup [1, \infty) \) (from \( \csc^{-1} x \)) gives us the points where both functions are defined. - The only points that satisfy both conditions are \( x = -1 \) and \( x = 1 \). Thus, the domain of \( f(x) \) is \( \{-1, 1\} \). ### Step 3: Calculate \( f(-1) \) and \( f(1) \) 1. **Calculate \( f(-1) \)**: \[ f(-1) = \cos^{-1}(-1) + 2 \cot^{-1}(-1) + 3 \csc^{-1}(-1) \] - \( \cos^{-1}(-1) = \pi \) - \( \cot^{-1}(-1) = \frac{3\pi}{4} \) (since \( \cot^{-1}(-1) = \frac{\pi}{4} + \pi \)) - \( \csc^{-1}(-1) = -\frac{\pi}{2} \) Therefore, \[ f(-1) = \pi + 2 \left(-\frac{\pi}{4}\right) + 3 \left(-\frac{\pi}{2}\right) = \pi - \frac{\pi}{2} - \frac{3\pi}{2} = \pi \] 2. **Calculate \( f(1) \)**: \[ f(1) = \cos^{-1}(1) + 2 \cot^{-1}(1) + 3 \csc^{-1}(1) \] - \( \cos^{-1}(1) = 0 \) - \( \cot^{-1}(1) = \frac{\pi}{4} \) - \( \csc^{-1}(1) = \frac{\pi}{2} \) Therefore, \[ f(1) = 0 + 2 \left(\frac{\pi}{4}\right) + 3 \left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{3\pi}{2} = 2\pi \] ### Step 4: Determine the range of \( f(x) \) The values we calculated are: - \( f(-1) = \pi \) - \( f(1) = 2\pi \) Thus, the range of the function \( f(x) \) is \( \{ \pi, 2\pi \} \). ### Final Answer The range of the function \( f(x) \) is \( \{ \pi, 2\pi \} \). ---

To find the range of the function \( f(x) = \cos^{-1} x + 2 \cot^{-1} x + 3 \csc^{-1} x \), we will follow these steps: ### Step 1: Determine the domains of the individual functions 1. **Domain of \( \cos^{-1} x \)**: The domain is \( x \in [-1, 1] \). 2. **Domain of \( \cot^{-1} x \)**: The domain is \( x \in \mathbb{R} \) (all real numbers). 3. **Domain of \( \csc^{-1} x \)**: The domain is \( x \in (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the overall domain of \( f(x) \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

Range of the function f(x)=2+|x^(2)+1| is

The number of integral values in the range of the function f(x)=sin^(-1)x-cot^(-1)x+x^(2)+2x +6 is

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

Suppose f, g and h be three real valued function defined on R Let f(x) =2x+|x| g(x) =1/3(2x-|x|) h(x) =f(g(x)) The range of the function k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x))) is equal to

Range of the function f(x)=((x-2)^2)/((x-1)(x-3)) is

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function: