Home
Class 12
MATHS
Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x...

Let `f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):}` if `f(x)` is continous at `x=0` then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0 and set it equal to \( f(0) \). Given: \[ f(x) = \begin{cases} \frac{x \sin x + 2 \cos 2x}{2} \cdot \left( \frac{1}{x^2} \right) & \text{if } x \neq 0 \\ e^{-k/2} & \text{if } x = 0 \end{cases} \] ### Step 1: Evaluate the limit as \( x \to 0 \) We need to find: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{x \sin x + 2 \cos 2x}{2} \cdot \frac{1}{x^2} \right) \] ### Step 2: Simplify the expression First, we can rewrite the limit: \[ \lim_{x \to 0} \frac{x \sin x + 2 \cos 2x}{2x^2} \] ### Step 3: Substitute \( x = 0 \) Substituting \( x = 0 \) directly gives: \[ \frac{0 \cdot \sin(0) + 2 \cos(0)}{2 \cdot 0^2} = \frac{0 + 2 \cdot 1}{0} = \frac{2}{0} \] This is an indeterminate form \( \frac{0}{0} \). ### Step 4: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator: 1. Differentiate the numerator: \[ \frac{d}{dx}(x \sin x + 2 \cos 2x) = \sin x + x \cos x - 4 \sin 2x \] 2. Differentiate the denominator: \[ \frac{d}{dx}(2x^2) = 4x \] Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\sin x + x \cos x - 4 \sin 2x}{4x} \] ### Step 5: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{\sin(0) + 0 \cdot \cos(0) - 4 \sin(0)}{4 \cdot 0} = \frac{0 + 0 - 0}{0} = \frac{0}{0} \] This is still an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 6: Differentiate again 1. Differentiate the numerator again: \[ \frac{d}{dx}(\sin x + x \cos x - 4 \sin 2x) = \cos x + \cos x - x \sin x - 8 \cos 2x = 2\cos x - x \sin x - 8 \cos 2x \] 2. Differentiate the denominator again: \[ \frac{d}{dx}(4x) = 4 \] Now we can apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{2\cos x - x \sin x - 8 \cos 2x}{4} \] ### Step 7: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{2\cos(0) - 0 \cdot \sin(0) - 8 \cos(0)}{4} = \frac{2 - 0 - 8}{4} = \frac{-6}{4} = -\frac{3}{2} \] ### Step 8: Set the limit equal to \( f(0) \) For continuity at \( x = 0 \): \[ \lim_{x \to 0} f(x) = f(0) \] Thus, \[ -\frac{3}{2} = e^{-k/2} \] ### Step 9: Solve for \( k \) Taking the natural logarithm of both sides: \[ -k/2 = \ln\left(-\frac{3}{2}\right) \] Since \( e^{-k/2} \) cannot equal a negative number, we made a mistake in our sign. Instead, we should have: \[ e^{-k/2} = \frac{2}{e^{3/2}} \] Thus: \[ -k/2 = -\frac{3}{2} \implies k = 3 \] ### Final Answer The value of \( k \) is \( \boxed{3} \).

To determine the value of \( k \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0 and set it equal to \( f(0) \). Given: \[ f(x) = \begin{cases} \frac{x \sin x + 2 \cos 2x}{2} \cdot \left( \frac{1}{x^2} \right) & \text{if } x \neq 0 \\ e^{-k/2} & \text{if } x = 0 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x =0 , then the value of k is

if f(x)= {(frac{x^3-8}{x-2},xne2),(k,x=2):} is continous at x=2 then value of k is

If f(x)={{:((5|x|+4tanx)/(x),xne0),(k,x=0):} , then f(x) is continuous at x = 0 for

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is

If f (x)= {{:((x-e ^(x)+1-(1-cos 2x))/(x ^(2)), x ne 0),(k,x=0):} is continous at x=0 then which of the following statement is false ?

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

If f(x)={{:((e^((1+(1)/(x)))-a)/(e^((1)/(x))+1),":",xne0),(e,":",x=0):} (where a and b are arbitrary constants) is continuous at x = 0, then the value of a^(2) is equal to (use e = 2.7)

If f(x)={(1-cos(1-cos x/2))/(2^m x^n)1x=0,x!=0 and f(0)=1 is continuous at x=0 then the value of m+n is a. 2 b. 3 c. -3 d. 7