Home
Class 12
MATHS
let f(x)=x^(3)l n(x^(2)(g(x)), where g(x...

let `f(x)=x^(3)l n(x^(2)(g(x))`, where `g(x)` is a differentiable positive function on `(0,infty)` satisfying `g(2)=(1)/(4),g^(')(2)=-3`, then `f'^(2)` is

A

77

B

88

C

`-88`

D

`-77`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f'(2) \) for the function \( f(x) = x^3 \ln(x^2 g(x)) \), where \( g(x) \) is a differentiable positive function on \( (0, \infty) \) with the given conditions \( g(2) = \frac{1}{4} \) and \( g'(2) = -3 \). ### Step 1: Rewrite the function We start with the function: \[ f(x) = x^3 \ln(x^2 g(x)) \] Using the properties of logarithms, we can rewrite it as: \[ f(x) = x^3 \left( \ln(x^2) + \ln(g(x)) \right) = x^3 (2 \ln(x) + \ln(g(x))) \] ### Step 2: Differentiate using the product rule We need to differentiate \( f(x) \). We will use the product rule and the chain rule. The derivative is: \[ f'(x) = \frac{d}{dx} \left( x^3 \right) (2 \ln(x) + \ln(g(x))) + x^3 \frac{d}{dx} \left( 2 \ln(x) + \ln(g(x)) \right) \] Calculating the first part: \[ \frac{d}{dx} (x^3) = 3x^2 \] Thus, \[ f'(x) = 3x^2 (2 \ln(x) + \ln(g(x))) + x^3 \left( \frac{2}{x} + \frac{g'(x)}{g(x)} \right) \] ### Step 3: Simplify the derivative Now, we can simplify the expression: \[ f'(x) = 3x^2 (2 \ln(x) + \ln(g(x))) + x^2 \left( 2 + x \frac{g'(x)}{g(x)} \right) \] Combining terms: \[ f'(x) = 3x^2 (2 \ln(x) + \ln(g(x))) + 2x^2 + x^2 \frac{g'(x)}{g(x)} \] ### Step 4: Evaluate at \( x = 2 \) Now we substitute \( x = 2 \): 1. Calculate \( g(2) \) and \( g'(2) \): - \( g(2) = \frac{1}{4} \) - \( g'(2) = -3 \) 2. Substitute into the derivative: \[ f'(2) = 3(2^2) \left( 2 \ln(2) + \ln\left(\frac{1}{4}\right) \right) + 2(2^2) + 2^2 \frac{-3}{\frac{1}{4}} \] Calculating each term: - \( 2^2 = 4 \) - \( \ln\left(\frac{1}{4}\right) = \ln(1) - \ln(4) = 0 - 2\ln(2) = -2\ln(2) \) So, \[ f'(2) = 3(4) \left( 2 \ln(2) - 2 \ln(2) \right) + 2(4) + 4 \cdot (-12) \] This simplifies to: \[ f'(2) = 0 + 8 - 48 = -40 \] ### Final Answer Thus, the value of \( f'(2) \) is: \[ \boxed{-40} \]

To solve the problem, we need to find \( f'(2) \) for the function \( f(x) = x^3 \ln(x^2 g(x)) \), where \( g(x) \) is a differentiable positive function on \( (0, \infty) \) with the given conditions \( g(2) = \frac{1}{4} \) and \( g'(2) = -3 \). ### Step 1: Rewrite the function We start with the function: \[ f(x) = x^3 \ln(x^2 g(x)) \] Using the properties of logarithms, we can rewrite it as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Leg g(x)=ln(f(x)), whre f(x) is a twice differentiable positive function on (0,oo) such that f(x+1)=xf(x)dot Then, for N=1,2,3, g^(N+1/2)-g^(1/2)=

Let g(x) = ln f(x) where f(x) is a twice differentiable positive function on (0, oo) such that f(x+1) = x f(x) . Then for N = 1,2,3 g''(N+1/2)- g''(1/2) =

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

f(x) and g(x) are two differentiable functions in [0,2] such that f"(x)=g"(x)=0, f'(1)=2, g'(1)=4, f(2)=3, g(2)=9 then f(x)-g(x) at x=3/2 is

Let f(x) = tan^-1 (g(x)) , where g (x) is monotonically increasing for 0 < x < pi/2.

If f(x), g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6, f(2)=3, g(2)=9, then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).