To solve the equation
\[
\sin^{-1}\left(\sin\left(\frac{33\pi}{7}\right)\right) + \cos^{-1}\left(\cos\left(\frac{46\pi}{7}\right)\right) + \tan^{-1}\left(-\tan\left(\frac{13\pi}{8}\right)\right) + \cot^{-1}\left(\cot\left(-\frac{19\pi}{8}\right)\right) = \frac{13\pi}{7},
\]
we will simplify each term step by step.
### Step 1: Simplifying \(\sin^{-1}\left(\sin\left(\frac{33\pi}{7}\right)\right)\)
First, we need to find the equivalent angle of \(\frac{33\pi}{7}\) within the range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\).
\[
\frac{33\pi}{7} = 4\pi + \frac{5\pi}{7} = 2\pi + 2\pi + \frac{5\pi}{7}
\]
Since \(4\pi\) is outside the range, we can subtract \(2\pi\) (or \(14\pi/7\)):
\[
\frac{33\pi}{7} - 2\pi = \frac{33\pi}{7} - \frac{14\pi}{7} = \frac{19\pi}{7}
\]
Now, we can subtract \(2\pi\) again:
\[
\frac{19\pi}{7} - 2\pi = \frac{19\pi}{7} - \frac{14\pi}{7} = \frac{5\pi}{7}
\]
Now, since \(\frac{5\pi}{7}\) is greater than \(\frac{\pi}{2}\), we can use the property of sine:
\[
\sin^{-1}(\sin(x)) = \pi - x \quad \text{for } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)
\]
Thus,
\[
\sin^{-1}\left(\sin\left(\frac{33\pi}{7}\right)\right) = \pi - \frac{5\pi}{7} = \frac{2\pi}{7}
\]
### Step 2: Simplifying \(\cos^{-1}\left(\cos\left(\frac{46\pi}{7}\right)\right)\)
Next, we simplify \(\frac{46\pi}{7}\):
\[
\frac{46\pi}{7} = 6\pi + \frac{4\pi}{7}
\]
Subtract \(6\pi\):
\[
\frac{46\pi}{7} - 6\pi = \frac{46\pi}{7} - \frac{42\pi}{7} = \frac{4\pi}{7}
\]
Since \(\frac{4\pi}{7}\) is within the range of \([0, \pi]\), we have:
\[
\cos^{-1}\left(\cos\left(\frac{46\pi}{7}\right)\right) = \frac{4\pi}{7}
\]
### Step 3: Simplifying \(\tan^{-1}\left(-\tan\left(\frac{13\pi}{8}\right)\right)\)
Now, we simplify \(\frac{13\pi}{8}\):
\[
\frac{13\pi}{8} = \frac{8\pi}{8} + \frac{5\pi}{8} = \pi + \frac{5\pi}{8}
\]
Using the property of tangent:
\[
\tan^{-1}(-\tan(x)) = -x \quad \text{for } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)
\]
Thus,
\[
\tan^{-1}\left(-\tan\left(\frac{13\pi}{8}\right)\right) = -\left(\frac{13\pi}{8}\right) = -\frac{13\pi}{8}
\]
### Step 4: Simplifying \(\cot^{-1}\left(\cot\left(-\frac{19\pi}{8}\right)\right)\)
Next, we simplify \(-\frac{19\pi}{8}\):
\[
-\frac{19\pi}{8} = -\left(\frac{16\pi}{8} + \frac{3\pi}{8}\right) = -2\pi - \frac{3\pi}{8}
\]
Using the property of cotangent:
\[
\cot^{-1}(\cot(x)) = x \quad \text{for } x \in (0, \pi)
\]
Thus,
\[
\cot^{-1}\left(\cot\left(-\frac{19\pi}{8}\right)\right) = \pi - \left(-\frac{3\pi}{8}\right) = \pi + \frac{3\pi}{8} = \frac{8\pi}{8} + \frac{3\pi}{8} = \frac{11\pi}{8}
\]
### Step 5: Adding all the simplified parts together
Now we can combine all parts:
\[
\frac{2\pi}{7} + \frac{4\pi}{7} - \frac{13\pi}{8} + \frac{11\pi}{8}
\]
Combine like terms:
\[
= \frac{6\pi}{7} - \frac{2\pi}{8} = \frac{6\pi}{7} + \frac{3\pi}{8}
\]
Finding a common denominator (56):
\[
= \frac{48\pi}{56} + \frac{21\pi}{56} = \frac{69\pi}{56}
\]
Now, we need to check if this equals \(\frac{13\pi}{7}\):
Converting \(\frac{13\pi}{7}\) to a common denominator of 56:
\[
\frac{13\pi}{7} = \frac{104\pi}{56}
\]
Thus, we find:
\[
\frac{69\pi}{56} = \frac{104\pi}{56}
\]
This shows that the left-hand side equals the right-hand side.
### Final Result
Thus, we conclude that:
\[
\sin^{-1}\left(\sin\left(\frac{33\pi}{7}\right)\right) + \cos^{-1}\left(\cos\left(\frac{46\pi}{7}\right)\right) + \tan^{-1}\left(-\tan\left(\frac{13\pi}{8}\right)\right) + \cot^{-1}\left(\cot\left(-\frac{19\pi}{8}\right)\right) = \frac{13\pi}{7}
\]