Home
Class 12
MATHS
The value of tansum(r=1)^oo tan^-1 (4/(...

The value of tan`sum_(r=1)^oo tan^-1 (4/(4r^2 +3))=`

A

1

B

3

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

let `T_(r)=tan^(-1)((4)/(4r^(2)+3))=tan^(-1)((1)/((3)/(4)+r^(2)))`
`=tan^(-1)((1)/(1+r^(2)-(1)/(4)))`
`=tan^(-1)(((r+(1)/(2))-(r-(1)/(2)))/(1+(r+(1)/(2))(r-(1)/(2))))`
`=tan^(-1)(r+(1)/(2))-tan^(-1)(r-(1)/(2))`
`thereforesum_(r=1)^(infty)T_(r)=tan^(_1)((3)/(2))-tan^(-1)((1)/(2))`
`+tan^(-1)((5)/(2))-tan^(-1)((3)/(2))`
`+tan^(-1)((7)/(2))-tan^(-1)((5)/(2))`
`thereforesum_(r=1)^(infty)T_(r)=(pi)/(2)-tan^(-1)((1)/(2))=cot^(-1)((1)/(2))=tan^(-1)(2)`
`thereforetan(sum_(r=1)^(infty)T_(r))=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))

The value of Sigma_(r=1)^(infty) tan^(-1) ( 1/(r^(2) + 5r + 7)) is equal to

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

If alpha and beta are the roots of the quadratic equation 4x ^(2) + 2x -1=0 then the value of sum _(r =1) ^(oo) (a ^(r ) + beta ^(r )) is :

The value of Sigma_( r =2)^( infty) tan^(-1) ( 1/( r^(2) - 5r + 7)) , is

If A=pi/5, then find the value of sum_(r=1)^8tan(r A)*tan((r+1)A)dot