Home
Class 12
MATHS
if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]...

if `[{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}]` then trace of A is equal to

A

`-11`

B

`-21`

C

`-25`

D

`-15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the trace of matrix A given the equation: \[ YAX = B \] where \( Y = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \), \( X = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix} \), and \( B = \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \). ### Step 1: Find the inverse of matrix Y First, we calculate the determinant of matrix Y: \[ \text{det}(Y) = (3)(5) - (2)(7) = 15 - 14 = 1 \] Since the determinant is not zero, Y is invertible. The inverse of Y can be calculated as: \[ Y^{-1} = \frac{1}{\text{det}(Y)} \text{adj}(Y) \] The adjugate of Y is given by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements: \[ \text{adj}(Y) = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \] Thus, we have: \[ Y^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \] ### Step 2: Multiply both sides of the equation by \( Y^{-1} \) Now we will multiply both sides of the equation \( YAX = B \) by \( Y^{-1} \): \[ Y^{-1}YAX = Y^{-1}B \] Since \( Y^{-1}Y = I \) (the identity matrix), we simplify to: \[ AX = Y^{-1}B \] ### Step 3: Calculate \( Y^{-1}B \) Next, we compute \( Y^{-1}B \): \[ Y^{-1}B = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \] Calculating this matrix multiplication: 1. First row, first column: \( (5)(2) + (-2)(0) = 10 \) 2. First row, second column: \( (5)(-1) + (-2)(4) = -5 - 8 = -13 \) 3. Second row, first column: \( (-7)(2) + (3)(0) = -14 \) 4. Second row, second column: \( (-7)(-1) + (3)(4) = 7 + 12 = 19 \) So, \[ Y^{-1}B = \begin{pmatrix} 10 & -13 \\ -14 & 19 \end{pmatrix} \] ### Step 4: Find matrix A Now we have: \[ AX = \begin{pmatrix} 10 & -13 \\ -14 & 19 \end{pmatrix} \] To find A, we need to multiply both sides by \( X^{-1} \). First, we calculate \( X^{-1} \): The determinant of X is: \[ \text{det}(X) = (-1)(1) - (1)(-2) = -1 + 2 = 1 \] The adjugate of X is: \[ \text{adj}(X) = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \] Thus, \[ X^{-1} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \] Now we can find A: \[ A = \begin{pmatrix} 10 & -13 \\ -14 & 19 \end{pmatrix} X^{-1} \] Calculating this multiplication: 1. First row, first column: \( (10)(1) + (-13)(2) = 10 - 26 = -16 \) 2. First row, second column: \( (10)(-1) + (-13)(-1) = -10 + 13 = 3 \) 3. Second row, first column: \( (-14)(1) + (19)(2) = -14 + 38 = 24 \) 4. Second row, second column: \( (-14)(-1) + (19)(-1) = 14 - 19 = -5 \) So, we have: \[ A = \begin{pmatrix} -16 & 3 \\ 24 & -5 \end{pmatrix} \] ### Step 5: Calculate the trace of A The trace of a matrix is the sum of its diagonal elements: \[ \text{trace}(A) = -16 + (-5) = -21 \] Thus, the trace of matrix A is: \[ \text{trace}(A) = -21 \] ### Final Answer The trace of A is equal to \(-21\). ---

To solve the problem, we need to find the trace of matrix A given the equation: \[ YAX = B \] where \( Y = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \), \( X = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix} \), and \( B = \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is 2xx2 matrix such that A[{:(" "1),(-1):}]=[{:(-1),(2):}]and A^2[{:(" "1),(-1):}]=[{:(1),(0):}] , then trace of A is (where the trace of the matrix is the sum of all principal diagonal elements of the matrix )

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to

{:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-1),( 0, 4)] .

If C= [{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{:(,0,2,3),(,-2,0,4),(,-3,-4,0):}] [{:(,1,7,9),(,4,2,8),(,6,5,3):}] Then trace of C+C^(3)+C^(5)+……+C^(99) is

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .