Home
Class 12
MATHS
If f:RrarrR is a continuous function sat...

If `f:RrarrR` is a continuous function satisfying `f(0)=1` and `f(2x)-f(x)=xAAxepsilonR` and `lim_(nrarroo)(f(x)-f(x/(2^(n))))=P(x)`. Then `P(x)` is

A

a constant function

B

a linear function

C

a quadratic polynomial in `x`

D

a cubic polynomial in `x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the function \( f \) and the conditions provided. ### Step 1: Understanding the Function We are given that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function satisfying: - \( f(0) = 1 \) - \( f(2x) - f(x) = x \) for all \( x \in \mathbb{R} \) ### Step 2: Define the Function \( g(x) \) Let's define a new function: \[ g(x) = f(2x) - f(x) \] From the given condition, we know: \[ g(x) = x \] ### Step 3: Evaluate \( g\left(\frac{x}{2}\right) \) Now, let's evaluate \( g\left(\frac{x}{2}\right) \): \[ g\left(\frac{x}{2}\right) = f(x) - f\left(\frac{x}{2}\right) = \frac{x}{2} \] ### Step 4: Evaluate \( g\left(\frac{x}{4}\right) \) Next, we evaluate \( g\left(\frac{x}{4}\right) \): \[ g\left(\frac{x}{4}\right) = f\left(\frac{x}{2}\right) - f\left(\frac{x}{4}\right) = \frac{x}{4} \] ### Step 5: Generalize for \( g\left(\frac{x}{2^n}\right) \) Continuing this process, we can generalize: \[ g\left(\frac{x}{2^n}\right) = f\left(\frac{x}{2^{n-1}}\right) - f\left(\frac{x}{2^n}\right) = \frac{x}{2^n} \] ### Step 6: Summing Up the Function Values Now we can sum these equations: \[ g(x) + g\left(\frac{x}{2}\right) + g\left(\frac{x}{4}\right) + \ldots + g\left(\frac{x}{2^n}\right) = x + \frac{x}{2} + \frac{x}{4} + \ldots + \frac{x}{2^n} \] The left-hand side simplifies to: \[ f(2x) - f\left(\frac{x}{2^n}\right) \] The right-hand side is a geometric series: \[ x \left(1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n}\right) = x \cdot \left(\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}}\right) = x \cdot (2 - \frac{x}{2^n}) \] ### Step 7: Taking the Limit as \( n \to \infty \) Taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \left(f(2x) - f\left(\frac{x}{2^n}\right)\right) = \lim_{n \to \infty} \left(x \cdot 2\right) = 2x \] Since \( f\left(\frac{x}{2^n}\right) \) approaches \( f(0) = 1 \): \[ f(2x) - 1 = 2x \implies f(2x) = 2x + 1 \] ### Step 8: Finding \( P(x) \) Now we need to find: \[ \lim_{n \to \infty} \left(f(x) - f\left(\frac{x}{2^n}\right)\right) \] Using the previous results, we have: \[ f(x) - 1 = 2x \implies P(x) = 2x \] ### Conclusion Thus, the function \( P(x) \) is: \[ P(x) = 2x \]

To solve the given problem step by step, we will analyze the function \( f \) and the conditions provided. ### Step 1: Understanding the Function We are given that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function satisfying: - \( f(0) = 1 \) - \( f(2x) - f(x) = x \) for all \( x \in \mathbb{R} \) ### Step 2: Define the Function \( g(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x/7 AA x in R, then f(42) is

If f:RrarrR is a function satisfying the property f(x+1)+f(x+3)=2" for all" x in R than f is

Let f be a continuous function satisfying f '(l n x)=[1 for 0 1 and f (0) = 0 then f(x) can be defined as

If f is continuous at a then [f ,a]=lim x->a f(x)-f(a)

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y in R^+ .If f'(1)=1,then (a)f is unbounded (b) lim_(x->0)f(1/x)=0 (c) lim_(x->0)f(1+x)/x=1 (d) lim_(x->0)x.f(x)=0

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

RESONANCE ENGLISH-TEST SERIES-MATHEMATICS
  1. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  2. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  3. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  4. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for (A) "x" epsilonR (B) 2npi...

    Text Solution

    |

  5. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  6. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  7. If the normal at four points P(i)(x(i), (y(i)) l, I = 1, 2, 3, 4 on th...

    Text Solution

    |

  8. Let f(x) = x^(3)- x^(2)+x+1and g(x) ={{:(max.f(t) , 0le tle x, " ...

    Text Solution

    |

  9. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  10. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  11. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  12. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then (...

    Text Solution

    |

  13. Find the coordinates of the points on the curve y=x^2+3x+4, the tangen...

    Text Solution

    |

  14. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  15. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |

  16. If f(x)=lim(m->oo) lim(n->oo)cos^(2m) n!pix then the range of f(x) is

    Text Solution

    |

  17. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  18. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  19. Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2,...

    Text Solution

    |

  20. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |