Home
Class 12
MATHS
tan^(-1)(sinx)=sin^(-1)(tanx) holds true...

`tan^(-1)(sinx)=sin^(-1)(tanx)` holds true for (A) `"x" epsilonR` (B) `2npi-(pi)/2lexle2npi+(pi)/2("n" epsilonz)` (C) `"x" epsilon{0,z^(+)}` (D) `"x" epsilonnpi("n" epsilonz)`

A

`"x" epsilonR`

B

`2npi-(pi)/2lexle2npi+(pi)/2("n" epsilonz)`

C

`"x" epsilon{0,z^(+)}`

D

`"x" epsilonnpi("n" epsilonz)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(\sin x) = \sin^{-1}(\tan x) \), we will follow a step-by-step approach. ### Step 1: Rewrite the equation We start with the given equation: \[ \tan^{-1}(\sin x) = \sin^{-1}(\tan x) \] ### Step 2: Use the identity for \(\sin^{-1}\) We can use the identity for \(\sin^{-1}(\theta)\): \[ \sin^{-1}(\theta) = \tan^{-1}\left(\frac{\theta}{\sqrt{1 - \theta^2}}\right) \] Applying this to the right-hand side: \[ \sin^{-1}(\tan x) = \tan^{-1}\left(\frac{\tan x}{\sqrt{1 - \tan^2 x}}\right) \] ### Step 3: Substitute into the equation Now we can rewrite the equation as: \[ \tan^{-1}(\sin x) = \tan^{-1}\left(\frac{\tan x}{\sqrt{1 - \tan^2 x}}\right) \] ### Step 4: Set the arguments equal Since both sides are \(\tan^{-1}\), we can set the arguments equal to each other: \[ \sin x = \frac{\tan x}{\sqrt{1 - \tan^2 x}} \] ### Step 5: Rewrite \(\tan x\) Recall that \(\tan x = \frac{\sin x}{\cos x}\). Substituting this into the equation gives: \[ \sin x = \frac{\frac{\sin x}{\cos x}}{\sqrt{1 - \left(\frac{\sin x}{\cos x}\right)^2}} \] ### Step 6: Simplify the right-hand side The denominator simplifies as follows: \[ \sqrt{1 - \tan^2 x} = \sqrt{1 - \frac{\sin^2 x}{\cos^2 x}} = \sqrt{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}} = \frac{\sqrt{\cos^2 x - \sin^2 x}}{\cos x} \] Thus, we have: \[ \sin x = \frac{\frac{\sin x}{\cos x}}{\frac{\sqrt{\cos^2 x - \sin^2 x}}{\cos x}} = \frac{\sin x}{\sqrt{\cos^2 x - \sin^2 x}} \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ \sin x \sqrt{\cos^2 x - \sin^2 x} = \sin x \] ### Step 8: Factor out \(\sin x\) This leads to two cases: 1. \(\sin x = 0\) 2. \(\sqrt{\cos^2 x - \sin^2 x} = 1\) ### Step 9: Solve the first case From \(\sin x = 0\), we have: \[ x = n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 10: Solve the second case From \(\sqrt{\cos^2 x - \sin^2 x} = 1\), squaring both sides gives: \[ \cos^2 x - \sin^2 x = 1 \] This simplifies to: \[ \cos^2 x = 1 \quad \Rightarrow \quad x = n\pi \quad \text{for } n \in \mathbb{Z} \] ### Conclusion Both cases lead to the same solution: \[ x = n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, the correct option is (D) \( x \in n\pi \) (where \( n \in \mathbb{Z} \)).

To solve the equation \( \tan^{-1}(\sin x) = \sin^{-1}(\tan x) \), we will follow a step-by-step approach. ### Step 1: Rewrite the equation We start with the given equation: \[ \tan^{-1}(\sin x) = \sin^{-1}(\tan x) \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

If sin^4 x+cos^4x=sinx.cosx, then x is equal to (A) npi, nepsilon I (B) (6n=1) pi/6, n epsilon I (C) (4n+1) pi/4, n epsilon I (D) none of these

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

If t a n x=3cot x , then the general value of x is (A) npi+pi/6,"n" in "I" (B) npi+pi/3,"n" in "I" (C) npi+-pi/6,"n" in "I" (D) npi+-pi/3,"n" in "I"

Evaluate int_(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsilon[0,pi//2] .

If sin^3theta+sinthetacos^2theta=1,t h e ntheta is equal to (n in Z) (a) 2npi (b) 2npi+pi/2 (c) 2npi-pi/2 (d) npi

If "cosec"x=1+cotx , then x=2npi,2npi+(pi)/(2)

If f(x) = sgn(sin^2x-sinx-1) has exactly four points of discontinuity for x in (0, npi), n in N , then

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}

A general solution of tan^2theta+cos2theta=1 is (n in Z) npi=pi/4 (b) 2npi+pi/4 npi+pi/4 (d) npi

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

RESONANCE ENGLISH-TEST SERIES-MATHEMATICS
  1. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  2. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  3. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for (A) "x" epsilonR (B) 2npi...

    Text Solution

    |

  4. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  5. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  6. If the normal at four points P(i)(x(i), (y(i)) l, I = 1, 2, 3, 4 on th...

    Text Solution

    |

  7. Let f(x) = x^(3)- x^(2)+x+1and g(x) ={{:(max.f(t) , 0le tle x, " ...

    Text Solution

    |

  8. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  9. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  10. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  11. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then (...

    Text Solution

    |

  12. Find the coordinates of the points on the curve y=x^2+3x+4, the tangen...

    Text Solution

    |

  13. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  14. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |

  15. If f(x)=lim(m->oo) lim(n->oo)cos^(2m) n!pix then the range of f(x) is

    Text Solution

    |

  16. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  17. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  18. Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2,...

    Text Solution

    |

  19. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  20. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |